
Embedded Programming:
Memory-Mapped I/O

Embedded Programming:
Memory-Mapped I/O

Interacting With Hardware Devices
From Software
By Jason Agron



Memory-Mapped?Memory-Mapped?

• Bus-based systems have an address space.
• Often times called “memory space”.

• Specific devices are associated with specific
address ranges.

• Addresses mean different things for different
types of devices.
• Memory - individual storage locations.
• IP cores - register based storage/command locations.

• How does a CPU access a bus?
• HINT - instruction type?



What is Memory-Mapped I/O?What is Memory-Mapped I/O?

• Memory-mapped I/O is the process of either…
• Sending output to a memory-mapped location.
• Getting input from a memory-mapped location.

• The CPU is able to do this using…
• LOAD and STORE instructions.
• Essentially, performing writes and reads on the bus.
• This is an easy and universal way for a CPU to

communicate with other devices.
• Pseudo code:

• inData = LOAD(address,offset);
• STORE(address,offset,outData);



What Can I Use M.M. I/O For?What Can I Use M.M. I/O For?

• Memory devices:
• Storing/retrieving data.

• Peripheral devices:
• Sending/receiving data.
• Controlling device (modes, setup, etc.).

• HW Accelerators:
• Setting up and controlling the execution of specialized HW

circuits.
• External devices:

• Reading switch and button settings.
• Controlling LEDs.
• The list goes on and on…



Goal Of This ProjectGoal Of This Project

• To create a system capable of interacting
with the switches, buttons, and LEDs on the
XUP board.

• Create a SW application that controls the
LEDs based on the “state” of the on-board
buttons and switches.

• This can all be done via the OPB_GPIO
devices for each peripheral.



Controlling Peripherals:
OPB_GPIO

Controlling Peripherals:
OPB_GPIO

• An OPB-based IP Core.
• GPIO = General Purpose I/O.
• A simple register interface that can function as

either an input or output register.
• Input Mode:

• Register value is read by software.
• State is inputted on HW signals.

• Output Mode:
• Register value is written by software.
• State is outputted on HW signals.



GPIO: Input ModeGPIO: Input Mode



GPIO: Output ModeGPIO: Output Mode



OPB_GPIO Register SetOPB_GPIO Register Set

• Each GPIO can be configured to have 1 to 2 ports.
• GPIOx_DATA:

• Data register for GPIO port x.
• Used to read input ports and write to output ports.

• GPIOx_TRI:
• 3-State register for GPIO port x.
• Used to dynamically configure the direction of a port.



OPB_GPIO SettingsOPB_GPIO Settings

• GPIOx_DATA Settings:
• Input Mode -

• READ - Reads value on input pins.
• WRITE - No effect.

• Output Mode -
• READ - Reads value in data register.
• WRITE - Writes value to data register and output pins.

• GPIOx_TRI Settings:
• Each bit can be individually programmed as input or output.
• 0 = Output Mode.
• 1 = Input Mode.



OPB_GPIO Memory-MapOPB_GPIO Memory-Map

• GPIO Channel (Port) 1:
• GPIO1_DATA -

• BASEADDRESS + 0x00
• GPIO1_TRI -

• BASEADDRESS + 0x04
• GPIO Channel (Port) 2:

• GPIO2_DATA -
• BASEADDRESS + 0x08

• GPIO2_TRI -
• BASEADDRESS + 0x0C

• Why is each register separated by an offset of 0x04?
• HINT - What is the bit-width of each register?



How Do I Access GPIO
Registers in SW?

How Do I Access GPIO
Registers in SW?

• Programming constructs must be used that
allow one to read/write specific addresses.

• In assembly:
• LOADs and STOREs.

• In C:
• Done with pointers.



XGPIO LibrariesXGPIO Libraries

• Xilinx has C libraries that provide functions
to control OPB_GPIO devices.

• Eliminates the need to explicitly use
pointers.
• Pointer/memory operations are now done

within the Xilinx-provided functions.
• An example of these functions will be

provided.



Pointers!Pointers!

• Pointers:
• A programming construct.
• Used to “point” to a specific location.

• Often times memory.

• Features:
• A location to point to (address).
• Something being pointed at (data).



Pointer ExamplePointer Example

• A pointer to an integer stored at location
0x5000000.
• volatile int *myPtr = (int*)0x5000000;
• What does the “volatile” keyword do?

• Writing data to the location:
• *myPtr = <newData>;

• Reading data from the location:
• dataAtLocation = *myPtr;

• Changing the location being pointed at:
• myPtr = <newLocation>;

• What is the “*” doing????



Application HintsApplication Hints

• First create a new application.
• Verify system operation with a “Hello World”

program.
• Add pointers for all required registers.

• Print out pointer values to check that they “point” to the
“right” addresses.

• Create a small control-loop program to
repetitively read the state of the buttons.
• Update the state of the LEDs on each iteration.
• Use print() statements to debug and/or display values.



More HintsMore Hints

• Each GPIO core has it’s own register set.
• i.e. the LED_GPIO has it’s own dedicated

register set that is totally separate from the
register set of the BUTTON_GPIO.

• Read the OPB_GPIO documentation to find
out the functionality of each register.
• Can be found on the web or by right-clicking

on the IP core in the IP Catalog Tab and
selecting “View PDF Datasheet”.



QuestionsQuestions

1) What is an address space?
2) What is memory-mapped I/O?
3) How does a CPU typically access a bus?
4) What does the * operator do in C?
5) What does the OPB_GPIO data register

represent?
6) What does the OPB_GPIO tri register represent?
7) How many bus transactions are required to

retrieve data from the OPB_GPIO data register?
Please explain.


