Interrupt-Based Systems

Lab Goal:

The goal of these lab(s) is to become familiar with the idea of interrupt-based processing techniques using the MicroBlaze processor.  A base system will be built that utilizes an interrupt controller to allow for multiple interrupt sources along with a set of interrupt sources.  The interrupt sources will include a timer as well as an external interrupt source.

Lab Background:

The MicroBlaze processor has only a single interrupt port, called the Interrupt port.  This port is a 1-bit signal that can be configured to be either edge- or level-triggered.  A multiplexer must be used in order to create a MicroBlaze-based system that has multiple interrupt sources.  A multiplexer built specifically to handle interrupt sources is often referred to as an interrupt controller, or often, a programmable interrupt controller (PIC).  The following diagram demonstrates how an interrupt controller is used to multiplex many interrupt sources onto a single interrupt request line.
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In this type of situation the processor must be able to determine which interrupts have fired and need servicing.  Most interrupt controllers contains registers that allow a processor to query the following:

· Which interrupts are enabled?

· Interrupt Enable Register (IER).

· Which interrupts have fired and need servicing?

· Interrupt Service Register (ISR).

· Which interrupts need to be cleared?

· Interrupt Acknowledge Register (IAR).

When the processor receives an interrupt, it must first look at the interrupt service register (ISR) to figure out which interrupts need to be serviced.  Each bit in the ISR represents an individual interrupt source.  If a bit X in the ISR is '1' then interrupt source X needs to be serviced.  If bit X in the ISR is '0' then the interrupt has not fired and does not need to be serviced.

After servicing each active interrupt, the processor must then clear the interrupt as well as its source.  The ordering of this operation is extremely important due to the fact that clearing an interrupt before clearing its source will result in apparent multiple interrupt events for a single source event.  Therefore it is pertinent to always clear an interrupt at its source, and then proceed until you have cleared the interrupt at the PIC and at the processor.

If interrupts are cleared incorrectly then “bad” situations can occur.  For example:

1) Interrupt0 occurs.

· Bit0 in the ISR is set to 1.

2) CPU receives an interrupt and then CPU jumps into its interrupt handler routine.

3) CPU checks Bit0 in the ISR.

· CPU then services the interrupt, but forgets to clear Bit 0!!!!

4) The CPU now returns from its interrupt handler routine to continue “normal” processing.

5) OH NO, BUT WAIT!!!! Bit0 has never been cleared, so the CPU's interrupt line is still asserted!!!!

· The CPU jumps right back into the interrupt handler routine, even though no new interrupts have occurred!!!!

In order to correct the situation described above, the interrupt handler should clear the interrupt at its source, and then at the PIC in step (3).  Clearing an interrupt at the PIC can be done by writing a '1' to the bit of interest to the PIC's interrupt acknowledge register (IAR).

Lab Instructions:

There are two major parts to building an interrupt-based MicroBlaze system.  The 1st part will involved constructing the hardware platform, while the 2nd part will involve developing an interrupt-based software system.

The hardware platform will require a base MicroBlaze system along with the following new peripherals:

· OPB Interrupt Controller.

· OPB Timer

Both of these peripherals must be added to the base system, connected to the OPB bus (with proper address ranges set), and then the ports of each IP core must be connected to complete the interrupt processing system.  The port interconnections will allow for the OPB Timer to generate an interrupt signal that will be sent to the OPB Interrupt Controller.  Then, the OPB Interrupt Controller will multiplex both the timer interrupt as well as an external interrupt onto the interrupt request line connected to the MicroBlaze processor.

Recommendations for the required connections (and their ordering) are:

1) Connect the “Interrupt” port of the MicroBlaze to a signal named “myIRQ”.

2) Connect the “Irq” port of the interrupt controller to the “myIRQ” signal.

3) Connect the “Interrupt” port of the timer to a signal called “periodic_interrupt”

4) Create an external port called “external_interrupt” (as shown in the following MHS file).

5) Connect both the “periodic_interrupt” signal and the “external_interrupt” signal to the “Intr” port of the interrupt controller (as shown in the following MHS file).

!!!! Please consult your TA after finishing your port connections !!!!

(It is critical to get these correct before making any other changes)

When fully connected, your port connections should result in an MHS file that has the following modifications (highlighted):

# Add an external port to the system will be the signal for the external interrupt

PORT external_interrupt = external_interrupt, DIR = I, SIGIS = INTERRUPT, SENSITIVITY = EDGE_RISING

BEGIN microblaze

 PARAMETER INSTANCE = microblaze_0


.


.


.

# Connect an interrupt request signal to the "Interrupt" port of the CPU

 PORT Interrupt = myIRQ

END

BEGIN opb_intc

 PARAMETER INSTANCE = opb_intc_0

 PARAMETER HW_VER = 1.00.c 

 PARAMETER C_BASEADDR = 0x80200200

 PARAMETER C_HIGHADDR = 0x802002ff

 BUS_INTERFACE SOPB = mb_opb 

# Connect the interrupt request signal to the "Irq" port of the PIC

 PORT Irq = myIRQ

# Connect the interrupt sources to the "Intr" port(s) of the PIC, this is a vector and order matters!!!!

 PORT Intr = periodic_interrupt & external_interrupt

END

BEGIN opb_timer

 PARAMETER INSTANCE = opb_timer_1

 PARAMETER HW_VER = 1.00.b

 PARAMETER C_COUNT_WIDTH = 32

 PARAMETER C_ONE_TIMER_ONLY = 0

 PARAMETER C_BASEADDR = 0x80200000

 PARAMETER C_HIGHADDR = 0x802000ff

 BUS_INTERFACE SOPB = mb_opb

 PORT OPB_Clk = sys_clk_s

# Connect the timer interrupt source to a signal

 PORT Interrupt = periodic_interrupt

END

The connections in your MHS file complete the interconnection of the interrupt signals within the FPGA, however,  this does not include how the external interrupt signal is connected to the outside world.  All external ports connections are specified in the system's UCF file.  This file associates an exact FPGA pin location with every external port of a system.  This file defines which pins are used for clocks, resets, and other I/O signals needed in FPGA-based designs.

The only modifications we need to make to the UCF file involve connecting the “external_interrupt” signal to an I/O pin that we are able to physically interact with.  In our case, we will associate the external interrupt source with an FPGA pin that happens to be connected to one of the push buttons on the XUP development board.

In order to use the I/O pins associated with the pushbuttons we must first remove the OPB_GPIO core that was used to interact with the pushbuttons in previous labs.  This can be done by going to the “System Assembly View” in XPS and right-clicking on the OPB_GPIO core associated with the pushbuttons and then clicking on “Delete Instance”.  A small window will appear and be sure to select “Delete instance and its ports...”.  Now the I/O pins used to connect to the pushbuttons are free to use for our external interrupt source.

Now open up the UCF file for your system and find the section that was formerly used to connect the pushbutton I/O pins.  This section uses a pair of statements to connect each signal up to an exact pin location as well as set the I/O standard used for that pin.  Comment out each of these lines using the “#” symbol, and then copy a single pair of statements to connect the “external_interrupt” signal to a pushbutton pin.  An example of the modifications needed in your UCF file is shown below:

#### Module PushButtons_5Bit constraints

Net external_interrupt LOC=AG5;

Net external_interrupt IOSTANDARD = LVTTL;

#Net fpga_0_PushButtons_5Bit_GPIO_IO_pin<0> LOC=AG5;

#Net fpga_0_PushButtons_5Bit_GPIO_IO_pin<0> IOSTANDARD = LVTTL;

#Net fpga_0_PushButtons_5Bit_GPIO_IO_pin<1> LOC=AH4;

#Net fpga_0_PushButtons_5Bit_GPIO_IO_pin<1> IOSTANDARD = LVTTL;

#Net fpga_0_PushButtons_5Bit_GPIO_IO_pin<2> LOC=AG3;

#Net fpga_0_PushButtons_5Bit_GPIO_IO_pin<2> IOSTANDARD = LVTTL;

#Net fpga_0_PushButtons_5Bit_GPIO_IO_pin<3> LOC=AH1;

#Net fpga_0_PushButtons_5Bit_GPIO_IO_pin<3> IOSTANDARD = LVTTL;

#Net fpga_0_PushButtons_5Bit_GPIO_IO_pin<4> LOC=AH2;

#Net fpga_0_PushButtons_5Bit_GPIO_IO_pin<4> IOSTANDARD = LVTTL;

At this point, all internal and external connections have been made to complete the hardware platform for an interrupt-based system.  Build your system, and test out an old(er) application to make sure that everything still works (NOTE:  The GPIOs used for buttons are no longer in the system).

Now, you must write software to enable the features of the newly created interrupt-based system.  This involves writing initialization code that will enable interrupt-related functions on all of the interrupt sources, the interrupt controller, and the MicroBlaze processor.  Additionally, an interrupt handler routine will be written to handle interrupts when they occur.  Conceptually, an interrupt handler routine can be thought of as a function that can be called at anytime from anywhere (if interrupts are enabled).  This implies that an interrupt handler routine must not have any effect on the state of the CPU, otherwise, program behavior could be seriously altered by the assertion of an interrupt. 

An Example:

Consider a program controlling a stoplight puts a counter value in r20 to represent how long to keep the yellow light lit, and let us also say that a “rogue” interrupt handler routine always sets r20 to 0x0000_0000.  The program would not be able to detect when this happens due to the fact that an ISR can be invoked at any time interrupts are enabled.  This would essentially cause the stoplight to go from green to red instantly, which could result in adverse real-world effects.

On the other hand, an interrupt handler routine is allowed to change values in memory (i.e. variables, device registers, etc.) as this does not have any side-effects on the actual state of the CPU.  Thus, an interrupt handler routine must save all pertinent CPU state upon an interrupt, and must restore the CPU state after servicing needed interrupts.  In the case of the MicroBlaze processor, this is handled by the “main” interrupt handler routine; which is a function that “wraps” up the user’s interrupt handler routine in such a way that the user does not have to worry about saving CPU state.  This requires a programmer to “register” their interrupt handler routine so that the “main” interrupt handler knows which user-level handler to call upon invocation of an interrupt.  Essentially, registration just involves putting the address of the user-level function in a place known by the “main” interrupt handler.  This place is known as the interrupt vector table.  The registration function that we will use is called microblaze_register_handler() and it is called in the following way from assembly:

· void microblaze_register_handler( ( (void*) function pointer, (void*) data pointer)

· 2 parameters, no return values.
· R5 should contain the function pointer.
· Address of the function to call upon an interrupt.
· R6 should contain the data pointer.
· Data pointer that can be used within the interrupt handler (we will not use this).
Interrupts on the MicroBlaze can be enabled/disabled by interacting with the MSR register.  The MSR register is a special purpose register, so the MTS and MFS instructions are needed to read/write the MSR register.

The basic order of operations for your software should be the following:

· Main program:

· Setup interrupts
· Register a handler.
· Enable interrupts on all sources.
· Setup the timer to generate a periodic interrupt.
· Enable interrupts on the MicroBlaze.
· Enter an infinite loop to print out a global variable, called X.
· Interrupt handler:
· Service each interrupt that has fired.
· Do this by incrementing the global variable X.
· Clear and service all interrupts that have fired.
· Clear them at the source, then the PIC.
· Return
The final goal of this exercise is to create a system to learn the basics of interrupts.  Your demo should show that you can successfully generate interrupts from both the periodic timer and the external interrupt source.  This means that you should be able to “see” which interrupts are firing in real-time.  For instance, the periodic interrupt could cause X to be incremented by 2, and the external interrupt could cause X to be incremented by 1.   This allows you to trace the types/frequency of the interrupts based on the output from the main program.
