Creating and using custom IP cores

By Jason Agron

e [P = Intellectual Property
* Why is it called this?

e |n our case, IP 1s “soft™.
Not physical.

e [t1is merely a (soft) “description” of a device.
Usually in VHDL or Verilog.

* Why 1is this cool?

e Can be open-source.
Can be understood and studied.

Can be customized.

e Portable...
It is a model - can be simulated or implemented.
= FPGA.
= ASIC.

For those who do not design HW...
* Many are provided by vendors.

 Xilinx provides many within it’s IP catalog.

For those that can design HW ...

* You can make your own.

* From scratch.

e Using other soft/hard components.

| % / _/'\/_\'_
at

Any digital device that you have seen could be
implemented as a soft IP core...

* Aslong as it can fit “inside” an FPGA.

Some examples:
e CPUs
e Graphics cards
* Network cards
* Specialized processors (DSPs, FPUs, DataFlow)
Memory banks

What Do

They enable a programmer/designer to
combine pieces of IP at will in order to form
a custom SoC within an FPGA.

No soldering!

* Just connect the inputs and outputs of the
respective IP cores.

* Done within VHDL/Verilog or a scripting
language.

P o
_»

XPS has a built-in wizard...
e Click on “Hardware...”
e Select “Create or Import Peripheral...”

The wizard allows one to...
e Create a new piece of IP.
e Select 1t’s interface (PLB, OPB, FSL).
e Select default features to include.

e Select it’s generation parameters...
* VHDL or Verilog, etc.

Create a custom IP core...
* With an OPB interface.
* With 4 SW-accessible registers
* With Reset/MIR support.

e Implemented in VHDL.

The result:

* Very simple IP core.

* 4 storage locations (readable/writable).

Applications Actions

ew Project |Hardwaye Scftware Device Configuration Debug Simulati Window Help

/i3 B E 88 Generate Netiist E RS- AR amalEXB ez £z oo

Generate Bitstream " “Filters |
Project | Applications | It R - | Bus Intedace © Ports ¢ Addresses
Create or Import Peripheral

Biv Connection Filters I
Platform

5 R Name l Bus Connection |\P Type |\P Version I
= Project Files -)

~MHS File: system.mh Debug Configuration

|| E-<®microk microblaze 5.00¢

+-<*mb_opb 1.10c
~MSS File: system.ms Check and View Core Licenses,
UCF File: data/systen 3 Clsan Netlist
iMPACT Command Fi
Implementation Optiol
~Bitgen Options File: 213 Clean Hardware [
roject Options E oph uartlite
Device: xc2vp3of{age-7
Netlist: TopLevel
~Implementation: XPS
~HDL: VHDL
Sim Model: BEHAVIORAL
=" Reference Files

|

-

i ~<Pdebug_module opb_mdm
@ Clean Bits : ¥

“~#chipscope_i

chipscope_icon

chipsc opb iba 0

chipsc pb_iba1.00.a
~<2|mb_bram bram_block

~~*dem_0

1.00.a
dem_module 1.00.a

+-Log Files
~8ynthesis Report Files

[T System Assembly View1

«
Output |Wamings I Errors

Create or Import Peripheral

|1 jagron@ shere-khan:~/388labs/basicMB

|_1 jagron@ shere-khan:~/388labs/chipscopeM|[_] jagron@ shere-khan:~/388labs/basicME/mi ‘@X\Iimx Platform Studio - fusers/jagron/388la

P
=r = = __/\‘

L&A g

Welcome to the Create and Import Peripheral
Wizard

This wizard will help you create and import a user peripheral for use in processor systems developed using
the EDK.

To continue, click Next.

More Info | < Back N Cancel

Peripheral Flow

Indicate if you want to create a new peripheral or import an existing peripheral.

This tool will help you create templates for a new EDK compliant peripheral, or help you import an existing peripheral into an XPS project or
EDK repository. The interface files and directory structures required by EDK will be generated.

—Select flow

& Create templates for a new peripheral

" Import gxisting peripheral

~Flow description

This tool will create HOL templates that have the EDK compliant
port/parameter interface. You will need to implement the bedy of
the peripheral.

More Info | B N Cancel

Repository or Project

Indicate where you want to store the new peripheral.

A new peripheral can be stored in an EDK repository, or in an XPS project. When stored in an EDK repository, the peripheral can be
accessed by multiple XPS projects.

" Toan EDK user repository (Any directory outside of your EDK installation path)

Bepository: I

* Toan XPS project

Project: I usersfjagron/388labsichip

i Peripheral will be placed under:

fusers/jagron/388|abs/chipscopeMB/pcores

More Info | B N Cancel

Name and Version

Indicate the name and version of your peripheral.

Enter the name of your peripheral. This name will be used as the top HDL design entity.

Name: |opb_customc ore
Version: 1.00.a

Major revision: Minor revision: Hardware/Software compatibility revision:

|1 El: !00 E‘: Ia 33

~Logical library name: opb_customcore v1_00 a

All HOL files (either created by you or generated by this tool) used to implement this peripheral must be compiled into the logical library

named above. Any other logical libraries referred to in your HDL are assumed to be available in the XPS project where this peripheral is
used, or in EDK repositories indicated in the XPS project settings.

More Info |

Cancel

Bus Interface

Indicate the bus interface supported by your peripheral.

To which bus will this peripheral be attached?

* égn{:hip Peripheral Bus (OPB)%

" Processor Local Bus (PLE)

" Fast Simplex Link (FSL)

~ATTENTION

Retfer to the following doecuments to get a better understanding of how user peripherals connect to the CoreConnect(TM) buses through
the IPIF interconnection standards.

CoreConnect Specification

OPB IPIF Specification for slave only peripherals

OPEB IPIF Specification for master/slave peripherals

PLE IPIF Specification for slave only peripherals

PLB IPIF Specification for master/slave peripherals

ESL IPIF Specification for master/slave peripherals

MNOTE: Cther bus interfaces are not supported by the wizard in this release.

More Info | B N Cancel

IPIF Services

Indicate the IPIF services required by your peripheral.

Your peripheral will be connected to the OPB bus through the OPB IP interface (IPIF) module. Besides standard functions like address
decoding, this module also offers other commonly used services. Using these services may significantly simplify the implementation of your

peripheral.

sng |esaydued diys-ug

~Basic slave service and support

Commeon and typically required by most
peripherals for operations like logic
control, status report, and etc.

SIW reset and MIR,

™ User logic interrupt support

¥ User logic S/W register support

—Advance slave service and support

Typically required by peripherals that need
data buffering or multiple memory/address
Spaces AcCess.

™ Burst transaction support
[~ FIFO

™ User logic address range support

—Master service and support

between regions.

™ DMA
" Simple

" Packet mode Scatter Gat

Typically required by complex peripherals like Ethemet and PCl for command data transfers

More Info |

Cancel

User S/W Register

Configure the software accessible registers in your peripheral.

The software accessible registers will be implemented in the user-logic module of your peripheral. These registers are addressable on the
byte, half-word or word boundaries. The following fields determine the characteristics of the registers.

Mumber of software accessible registers: ¥

Data width of each register: I32 "| bit

—Write Mode

Instead of the usual acknowledge write behavior, an alternative kind of write behavior, posted wrife, is also supported. Under the posted
write behavior, the IPIF uncenditionally acknowledges the write transactions to the OPB on the earliest clock cycle, thus reduces latency
and improves performance. When posted writes are enabled, it is assumed that the custom user logic will retire the data immediately to

local storage.

" Enable posted write behavior
¥ Disable posted write behavior for normal acknowledged write behavior

" Allow dynamic posted/acknowledged write behavior controlled by user logic (IP2Bus_PostedWrinh)

More Info | B N Cancel

IP Interconnect (IPIC)

Select the interface between the logic to be implemented in your peripheral and the IPIF.

Your peripheral is connected to the bus through a suitable IPIF module. Your peripheral interfaces to the IPIF through a set of signals called
the IP interconnect (IPIC) interface. Some of the ports are always present. You can choose to include the others based on the functionality
required by your peripheral.

Nete: all IPIC ports are active high.

Ll IP2Bus_Clk —Bus2IP_Addr

OPB or PLB bus Bus2IP_Clk This is the address bus from the IPIF to the user
3 Bus2IP_Reset logic. This bus is the same width as the host bus
= = U Bus2IP_Freeze address bus. The Bus2IP_Addr bus can be used

Bus2IP_Addr for additional address decaoding or as input to

Bus2IP_Data addressable memory devices.

Bus2IlP BE
U Bus2IP_Burst
Bus2IP_RNW
L __} Bus2lP_CS
RN (O cusor ce
Rus?lP RACE

ST O
User Logic =

Restore Defaults

More Info | B N Cancel

(OPTIONAL) Peripheral Simulation Support

Generate optional files for simulation using Bus Functional Models (BFM).

The EDK provides a BFM simulation platform to help you simulate your peripheral. Indicate if you want this tool to generate the appropriate
HOL and Bus Functional Language (BFL) stimulus file for the target bus.

OPB Device (master) +——+

; Inggenera‘[e BFM simulation platform for ModelSim-SE or ModeISim-F’Eg
Fymeh)

OPB Device (slave) +———+ ch This feature requires that you have accepted the associated IBM license agreement and
fro—

b installed the BFM toolkit. The link below shows how:

; OFB Monitor

EFM Toolkit Installation [nstructions

myip_th

More Info |

Cancel

(OPTIONAL) Peripheral Implementation Support

Generate optional files for hardware/software implementation

Upon completion, this tool will create synthesizable HDL files that implement the IPIF services you requested. A stub 'user_logic' medule will
be created. You will need to complete the implementation of this module using standard HDL design flows. The tool will also generate EDK
interface files {mpd/pac) for the synthesizable templates, so that you can hook up the generated peripheral to a processor system.

-Mote
Peripheral (vHDL)
Should the peripheral interface (ports/parameters) or file list change, you will need to regenerate the
EDK interface files using the import functionality of this toal.
IPIF (VHDL)

I_éGenerate stub 'user logic' template in Verilog instead of VHDL%

I H Generate |SE and XST project files to help you implement the peripheral using XST flow
User Logic

{VHDL) 1 Generate template driver files to help you implement software interface

More Info | B N Cancel

Congratulations!

When you click Finish, HOL files representing your peripheral will be generated. You will have to
implement the functionality of your peripheral in the stub ‘user logic' template file.

IMPORTANT: If you make any interface changes to the generated peripheral (including peripheral name,
version, ports and parameters), or any file changes (add or remove files), you will need to regenerate the
EDK interface files by using this tool in the Import mode.

Thank you for using Create and Import Peripheral Wizard! Please find your =
peripheral hardware templates

under /users/jagron/388labs/chipscopeMB/pcores/opb_customcore_wvl _00_a and
peripheral software templates -
under /users/jagron/388labs/chipscopeMB/drivers/opb_customcore_v1 _00_a
respectively.

Peripheral Summary:

top name : opb_customcore
version : 1.00.a

type : OPB slave
features : slave attachement

mir/rst register —‘;j
3

More Info | B Einish Cancel |

Now What?

We have just created a piece of IP that 1s now 1n
the project repository.

How do we use it?

It must first be added into the system.
e Added into the system.
* Connected to the bus.

e Configured (address range, ports).

How do we see 1t?
e (HINT) IP Catalog Tab

Applications Actions

¥ File Edi ew Project Hardware Scftware Device Configuration Debug Simulation Window Help
ID2ELFDE|loayREnRrBRRHERALF=2Ra R EXIBEc ||=B8 00K
=l

~Filters

Projet. | Applcations | 1P Catalog | L L 26 Bus Intertacs ¢ Ports " Addresses | B Connection Fiters |
L v

= g MName lBus Connection |\P Type |\P Version l

Name ° I Verian |_‘J - <@ microk 0 microblaze
"CIGC R GONTroT L | ®-<*mb_opb

+-Communication High-Speed | I - <1 |
+-Communication Low-Speed R el

DA - ~<Pdebug_module opb_mdm
Debug 4‘ - dr
+ FPGA Reconfiguration A =1l

+-General Purpose [O >Rs232 Uart 1 opb uartlite
Interrupt Control < LEDs 4Bit
Memory Block
E'Msmury Controller

+-PCl ~#chipscope._i chipscope_icon

#-Peripheral Controller chipsc opb_iba_0 chipsc pb_iba 1.00.a
t+Processor ~<®Imb_bram bram_block 1.00.a
Project Repository ~~#dcm_0 dem_medule 1.00.a

+-Reset Control
Timer
Utility

- Verification

4

[T System Assembly View1

«
Output |Wamings I Errors

|1 jagron@ shere-khan:~/388labs/basicMB | [_] jagron@ shere-khan:~/388labs/chipscopeM|[_] jagron@ shere-khan:~/388labs/basicME/mi ‘@X\Iimx Platform Studio - /users/jagron/388la

Applications Actions

ew Project Hardware Scftware Device Configuration Debug Simulation Window Help

JJD *Er.\ﬂ@ B B[o ¥ %@m\unuﬂ@m BB @lo-dRae|mlRXE ez =]lae oo

~Fiters —————
Project |Appli:aﬂons ‘ IP Catalog | L = Bl Interfecn " Fortal*" Addrasses E)v Connection Filters I
5 V

= v MName lBus Connection |\P Type |\P Version I

Name ° I Version |_‘J - microt 0 microblaze 5.00.c
TCICCR GO | |=-<mb opb 0 1.10.c

+-Communication High-Speed | -]
+ Communication Low-Speed -

DA - ~<Pdebug_module opb_mdm

Debug |
+ FPGA Reconfiguration I bra
+General Purpose 10 a opb_uartlite

+Interrupt Control

: Memory Block
E'Msmury Controller
+-PCl

+Peripheral Controller

+Processor

: Project Repository
“#Imb_bram bram_block
+Reset Control “#dem_0 dem_medule
+-Timer - B
Uty

+Verification

[T System Assembly View1

Assigned Driver opb_customcore 1.00.a for instance opb_customcore_0
opb_customcore_0 has been added to the project

«
Output |Wamings I Errors

|1 jagron@ shere-khan:~/388labs/basicMB | [_] jagron@ shere-khan:~/388labs/chipscopeM|[_] jagron@ shere-khan:~/388labs/basicME/mi ‘@X\Iimx Platform Studio - /users/jagron/388la

Applications Actions

I+ i ew Project Hardware Scftware Device Configuration Debug Simulation Window Help

ud‘{amu@ NElvasREnRuBER|BE ‘u%uvcémm\umvaﬂm HEGEEE =1

e Filters
Project |Appli:aﬂons ‘ IP Catalog | :F‘ Bus Interface " Ports & Addresses | fifl Generate Addresses I
+

Name |Address | Base Address IHigh Address | Size |ank I Bus Connection I\P Typ{ IP Version I Instance

Name \7 I Version |—AJ u a mb_opb

"TOCR GOMTToT SLMB 0x00000000 0x00003fIf 18K dimb dimb_cntir

#- Communication High-Speed SLME 0x00000000 Ox0OOOSHH 16K iimb iimb_cntir
Communication Low-Speed mb_opb

£ DMA 0x40000000 0x4000ffff LEDs_4Bit

: Debug 0x40020000 0x4002ffff DIPSWs_4Bit
+-FPGA Reconfiguration 0x40040000 Ox4004ffff PushButtons_5Bit
+- General Purpose 10 0x40600000 Ox4060ffff RS232 Uart 1
Interrupt Control 0x41400000 0x4140ffff debug_module

Memory Block

E'Msmury Controller
+-PCl

+Peripheral Controller

Processor
: Project Repository

+-Reset Control
+-Timer

- Utilty
+Verification
[T System Assembly View1

«
Output |Wamings I Errors

Ready
|1 jagron@ shere-khan:~/388labs/basicMB | [_] jagron@ shere-khan:~/388labs/chipscopeM|[_] jagron@ shere-khan:~/388labs/basicME/mi ‘@X\Iimx Platform Studio - /users/jagron/388la

Applications Actions

ew Project Hardware Software Device Configuration Debug

JJD *Elr.\um bElvayRBEaRBRR l\uaa] ‘urawc;@m\umva%\m HEGEEE =1

e Filters
Project |Appli:aﬂons ‘ IP Catalog | :F‘ Bus Interface " Ports & Addresses | fifl Generate Addresses I
+

Name |Address | Base Address |High Address | Size ILm‘GEﬂerale Addrsssss‘l IP Typ{ IP Version I Instance

Name % [version [u O b opb

FCTGCR GO SLMB 0x00000000 0x00003ff 16K dimb dimb_cntlr

#- Communication High-Speed SLME 0x00000000 Ox0OO03fH 16K iimb iimb_cntir
+-Communication Low-Speed flsore 0x40000000 0x4000ffff B4K mb_opb LEDs 4Bit

£ DMA SOPB 0x40020000 0x4002ffff 84K mb_opb DIPSWs_4Bit

: Debug SOPB 0x40040000 Ox4004ffff 84K mb_opb PushButtons_5Bit
+-FPGA Reconfiguration SOPB 0x40600000 Ox40B0ftfF 64K mb_opb RS232_Uart_i
-General Purpose 10 SOPB 0x41400000 Oxd140ffff 64K mb_opb debug_module
#-Intenrupt Control Si mb_oph

: Memory Block
E'Msmury Controller
+PCl

+Peripheral Controller

Processor
: Project Repository

+-Reset Control
+-Timer

- Utilty
+Verification
[T System Assembly View1

(0x41400000-0x4140f£ff) debug_medule mb_opb

INFO:MDT - Trying to assign some memory to MicroBlaze reset address.

INFO:MDT - Address Generator does not set MicroBlaze reset address:Ox0 is taken.

INFO:MDT - Standard address map is applied.

Address Map for Processor microblaze 0
(0x00000000-0x00003£ff) dimb_cntlr dlmb
(0x00000000-0x00003££f) ilmb_cntlr ilmb
(0x40000000-0x4000££ff) LEDs_4Bit mb_opb
(0x40020000-0x4002£££f) DIPSWs_4Bit mb_opb
(0x40040000-0x4004f££f) PushButtons_5Bit mb_opb
(0x40600000-0x4060f£fff) RS5232_Uart_1 mb_opb
(0x41400000-0x4140f££f) debug_medule mb_opb
(0x77000000-0x7700f£ff) opb_customcore_0 mb_opb

INFO:MDT - Address map generated successfully.

«
Output |Wamings I Errors

Ready
|1 jagron@ shere-khan:~/388labs/basicMB | [_] jagron@ shere-khan:~/388labs/chipscopeM|[_] jagron@ shere-khan:~/388labs/basicME/mi ‘@X\Iimx Platform Studio - /users/jagron/388la

Now What?

The custom IP core 1s now...

e Instantiated within the system
e Via “Add IP”.

e Connected to the system.

e Via bus connection and address generation.
Now, how do we use 1t?

* We must write an application that “talks™ to it.

How do you communicate with IP?
* You know it’s address (hopefully).
* How does a CPU communicate with addresses???

CPUs can read/write to addresses.

Usually addresses refer to memory locations.
* This is not always true.
* Anything can be “mapped” into an address space.

e It doesn’t have to be memory.

Reads: request information from a specific source.

Writes: send information to a specific source.

What programming constructs do we need?

Pointers:

* A programming construct.

» Used to “point” to a specific location.

e Often times memory.

e Features:
e A location to point to (address).
e Something being pointed at (data).

A pointer to an integer stored at location
0x5000000.

* int *myPtr = (int*)0x5000000;
Writing data to the location:

* *myPtr = <newData>;
Reading data from the location:
* dataAtLocation = *myPtr,

Changing the location being pointed at:
* myPtr = <newlLocation>,

What is the “*”” doing????

We now know how to “talk™ to IP.
Now, let’s make an application to prove it.

This can be done in XPS via the...
* Applications Tab.

Steps:

* Create a new application.
e Associate it with a CPU.
* Create and define the source program.

* Run the program.

Applications Actions

¥ File Edit ew Project Hardware Scftware Device Configuration Debug Simulation Window Help
IDPRL s EleoayeBaRBROR|HR 2|m-<tBelme|EX||Brllz z|me 0B
X

~Filters

Project | Applications I‘P Catalog | : & Bus Interface ¢ Ports ¢ Addresses | E}v Connection Filters

Software Projects | i |Name l Bus Connestion l IP Typs IP Version l

[Add Software Application ! 0 5.00.c
Dsfault: microblaze_0_boc |l UR opb opb
deau\t: microblaze 0 xmdstub I I
umlecl: TestApp_Memory
[¥iProject: Testapp_Peripheral i ~Pdebug_module opb mdm 2.00.a
%ijec 3 j ~<dr
fﬁPro]ec i i T

- mProject: FsmTest >Rs232 Uart 1 opb_uartlite .00.b

micr

| EDs 4Bit opb_gpio

of

chipscope_icon 1

opb_iba

~<®Imb_bram bram_block
~#decm_0 dem_medule

[T System Assembly View1

«
Output |Wamings I Errors

We need to give this

application pro J ect a Project Name |CustomCoreT est
name. Note: Project Name cannot have spaces.

microblaze 0

We also need to
associate it with a

ProcCessor. I—_‘

e Chooses which CLE file s Berite
compiler to use.

I Project is an ELF-only Project

Why does the compiler

matter? OK | Cancel |

Applications Actions

¥ File Edit ew Project Hardware Scftware Device Configuration Debug Simulation Window Help
ID2EE|PrEleve eBalRBRR R Eg-=aRa|mE | EXRrlc £]|%8 0Dk
=l

~Filters

Project | Applications I‘P Catalog | LL : & Bus Interface ¢ Ports ¢ Addresses | E}v Connection Filters

Software Projects © " |Name lBus Connestion I\P Type IP Version l

i~ 1]Add Software Application Project H-<Pmicrot micr

mDeiau\t' microblaze 0_bootloop | =-<*mb_opb
deau\t: microblaze 0 xmdstub Il I - <[|
- Project: TestApp_Memory T | &<l

opb

+- [¥iProject: TestApp_Peripheral 1 -Sdebug module
+[#iProject: HelloTest di -

= Project: BlinkTest i - ,
+ FaProject: FsmTest RS232 Uart 1 opb uartlite .00.b
=-?,‘,,Pru]e«:l: CustomCoreTest P EDs 4Bit

opb_mdm 2.00.a

opb_gpio

*-Processor: microblaze 0

~Executable: /users/jagron/388labs/chipscope of
+-Compiler Options i chipscope_icon 1
Sourc
Headers Existing Files
Add New File. ~<@Imb_bram bram_bleck

~#decm_0 dem_medule

opb_iba

[T System Assembly View1

First, figure out the base address of the
custom IP core.

Important register offsets:
* Reg0 = base + 0xO.

* Regl = base + 0x4.
* Reg2 = base + 0x8.
* Reg3 = base + OxC.

ResetReg = base + 0x100.
e Reset command to write 1s 0xO000000A.

First define pointers to all required registers.

Make sure to use the volatile qualifier!!!
* What does this do?
* Why is this needed?

Make a simple program...

* Reset state of custom IP core.
Write to fill in custom IP core’s state.

Read back state to verify correct operation.
Reset state of custom IP core.
Read back state to verify correct operation.

