
The Xilinx EDK Toolset:
Custom IP Cores

The Xilinx EDK Toolset:
Custom IP Cores

Creating and using custom IP cores
By Jason Agron

What is an IP Core?What is an IP Core?

• IP = Intellectual Property
• Why is it called this?

• In our case, IP is “soft”.
 Not physical.

• It is merely a (soft) “description” of a device.
 Usually in VHDL or Verilog.

• Why is this cool?
• Can be open-source.

 Can be understood and studied.
 Can be customized.

• Portable…
 It is a model - can be simulated or implemented.

 FPGA.
 ASIC.

Where Do IP Cores Come From?Where Do IP Cores Come From?

• For those who do not design HW…
• Many are provided by vendors.
• Xilinx provides many within it’s IP catalog.

• For those that can design HW…
• You can make your own.

• From scratch.
• Using other soft/hard components.

What Is A Typical IP Core?What Is A Typical IP Core?

• Any digital device that you have seen could be
implemented as a soft IP core…
• As long as it can fit “inside” an FPGA.

• Some examples:
• CPUs
• Graphics cards
• Network cards
• Specialized processors (DSPs, FPUs, DataFlow)
• Memory banks

What Do Soft IP Cores Enable?What Do Soft IP Cores Enable?

• They enable a programmer/designer to
combine pieces of IP at will in order to form
a custom SoC within an FPGA.

• No soldering!
• Just connect the inputs and outputs of the

respective IP cores.
• Done within VHDL/Verilog or a scripting

language.

How To Create Custom IP CoresHow To Create Custom IP Cores

• XPS has a built-in wizard…
• Click on “Hardware…”
• Select “Create or Import Peripheral…”

• The wizard allows one to…
• Create a new piece of IP.
• Select it’s interface (PLB, OPB, FSL).
• Select default features to include.
• Select it’s generation parameters…

• VHDL or Verilog, etc.

Our GoalOur Goal

• Create a custom IP core…
• With an OPB interface.
• With 4 SW-accessible registers
• With Reset/MIR support.
• Implemented in VHDL.

• The result:
• Very simple IP core.
• 4 storage locations (readable/writable).

XPS - Creating Custom IPXPS - Creating Custom IP

XPS - Wizard StartupXPS - Wizard Startup

XPS - Create New PeripheralXPS - Create New Peripheral

XPS - Select Storage LocationXPS - Select Storage Location

XPS - Select Name & VersionXPS - Select Name & Version

XPS - Interface SelectionXPS - Interface Selection

XPS - Feature/Service SelectionXPS - Feature/Service Selection

XPS - S/W Register SelectionXPS - S/W Register Selection

XPS - IPIC ConfigurationXPS - IPIC Configuration

XPS - Simulation SupportXPS - Simulation Support

XPS - Implementation SupportXPS - Implementation Support

XPS - IP Creation CompleteXPS - IP Creation Complete

IP Created, Now What?IP Created, Now What?

• We have just created a piece of IP that is now in
the project repository.

• How do we use it?
• It must first be added into the system.

• Added into the system.
• Connected to the bus.
• Configured (address range, ports).

• How do we see it?
• (HINT) IP Catalog Tab

XPS - Adding IP To The SystemXPS - Adding IP To The System

XPS - Connecting IP To BusXPS - Connecting IP To Bus

XPS - Locking Address RangesXPS - Locking Address Ranges

XPS - Generate Address Range
For New IP

XPS - Generate Address Range
For New IP

Now What?Now What?

• The custom IP core is now…
• Instantiated within the system

• Via “Add IP”.

• Connected to the system.
• Via bus connection and address generation.

• Now, how do we use it?
• We must write an application that “talks” to it.

• How do you communicate with IP?
• You know it’s address (hopefully).
• How does a CPU communicate with addresses???

Memory-Mapped I/OMemory-Mapped I/O

• CPUs can read/write to addresses.
• Usually addresses refer to memory locations.

• This is not always true.
• Anything can be “mapped” into an address space.

• It doesn’t have to be memory.

• Reads: request information from a specific source.
• Writes: send information to a specific source.
• What programming constructs do we need?

Pointers!!!Pointers!!!

• Pointers:
• A programming construct.
• Used to “point” to a specific location.

• Often times memory.

• Features:
• A location to point to (address).
• Something being pointed at (data).

Pointer ExamplePointer Example

• A pointer to an integer stored at location
0x5000000.
• int *myPtr = (int*)0x5000000;

• Writing data to the location:
• *myPtr = <newData>;

• Reading data from the location:
• dataAtLocation = *myPtr;

• Changing the location being pointed at:
• myPtr = <newLocation>;

• What is the “*” doing????

XPS - Creating An ApplicationXPS - Creating An Application

• We now know how to “talk” to IP.
• Now, let’s make an application to prove it.
• This can be done in XPS via the…

• Applications Tab.
• Steps:

• Create a new application.
• Associate it with a CPU.
• Create and define the source program.
• Run the program.

XPS - Creating An ApplicationXPS - Creating An Application

XPS - Application PropertiesXPS - Application Properties

• We need to give this
application project a
name.

• We also need to
associate it with a
processor.
• Chooses which

compiler to use.
• Why does the compiler

matter?

XPS - New Application SourcesXPS - New Application Sources

Application HintsApplication Hints

• First, figure out the base address of the
custom IP core.

• Important register offsets:
• Reg0 = base + 0x0.
• Reg1 = base + 0x4.
• Reg2 = base + 0x8.
• Reg3 = base + 0xC.
• ResetReg = base + 0x100.

• Reset command to write is 0x0000000A.

Application HintsApplication Hints

• First define pointers to all required registers.
• Make sure to use the volatile qualifier!!!

• What does this do?
• Why is this needed?

• Make a simple program…
• Reset state of custom IP core.
• Write to fill in custom IP core’s state.
• Read back state to verify correct operation.
• Reset state of custom IP core.
• Read back state to verify correct operation.

