e | \ VAl = ™
> AN P, o

_/<
\YH HPSVE -] YT Pl ¥Fis
_/),

I\ A cl

.

Building a Base System Platform

By Jason Agron

EDK = Embedded Development Kit.

It 1s a set of tools used to build embedded
processing systems.
* 1.e. Systems-On-Chip (SoCs).

e Processors (MicroBlaze, PowerPC).

e Interconnect (PLB, OPB, FSL, Custom, etc.).

e Memories (BRAM, DDR).

e Peripherals (UART, GPIO, Ethernet, Custom, etc.).
Provides a single environment for...

e Simulation

e Synthesis.

e Compilation.

Xilinx Platform Studio (XPS) - the actual tool.

e Design flow...

e First, create the hardware platform.
Select all of the peripherals.

Connect all of the peripherals.

e Second, create the software for the platform.
Write SW to “make things work™.

e [terate if needed.

The FPGA has a malleable fabric...
* So both SW and HW are flexible and can be changed...

e At “compile-time”.

e At “run-time” (dynamic reconfiguration).

MHS File:

* Describes all components and connections in a system.

MSS File:

* Describes all SW drivers associated with components
of a system.

UCEF File:

e Describes the connections of all top-level ports.

* All top-level ports have connections to specific
physical pins on the FPGA.

Open up XPS.

Create a new project.

* Select “File”, “New Project”

* Select “Base System Builder...”

e Provides a wizard to help get basic system
established.

e Click OK.

eqm _
(o ale
\J“‘ - 9 _/

o

= Xilinx Platform 5tudio - no project opened - [[Platform Studio]]

Wiesy Projeck Hardware Software Desdos Configuration Debug S
SN Mew Project... Clrl+Shift+n 3BT oy [B
B % ormnpoect.. cubshieo

=

-

Chr R

Chr

Chrl+5

ue May 29, 1:30PM
nx Platform Studio - no project opened

Eile Edit View Project Hardware Software Device Configuration Debug Simulation Window Help
IDPEGEE oMY RBEAIB BRI E|Z-AR =]
[

Applications | Project |

Software Projects

Xilinx Platform Studio
Create new or open existing project
BSB + Base System Builder wizard (recommended)
[@ ¢ Blank XPS project

E © Open a recent project

Browse installed EDK examples (projects) here

Cancel

1

Output Errors
E [_] jagron@ shere-khan:~(388labs/ | [_] jagron@ shere-khan: ~/388labs/ |[_] jagron@ shere-khan:~(388labs/ Xilinx Platform Studio - no proji

Create New XPS Project using BSB Wizard

MNew project

Project file

Advanced options (optional: F1 for help)
[T Use Repository paths

Now, create a directory for this EDK project.
e Saved it as “system.xmp”’.

IMPORTANT NOTE!!!!

e Make sure that the absolute path contains no spaces!!!!

e Make sure that this project is in it’s own directory!!!

™ o 1

— O D Y o

—2dASEe ODVST
-

\ N~

The Base System
Builder window will __ "
Open. Welcome to the Base System Builder!

This 1ool will lead you through the steps necessary o creale an embedded sysiem.

Select “Create a New

Design...”.

Now we can select the
base components of
our custom SoC.

We must select the
platform we wish to
use.

In our case 1t 1s...

e Vendor = Xilinx.
e Board = XUP.
e Rev#=C

[Y Y B
) g Y <Yava
OCesSsSor e

Choice as to which

processor to use in our
SoC.

PowerPC:
e PPC405 Hard Core.
e Physical CPU embedded
within FPGA fabric.
MicroBlaze:
e Soft core.

* Must be synthesized
(implemented using the
FPGA fabric).

We will use the
MicroBlaze.

Choose customizable
CPU settings.

In our case...
e Bus freq. = 100 MHz.

* Debug I/F = On-chip.
e [Local mem. = 16 KB.

* No cache.
* Disabled FPU.

Simple, but highly
effective.

Choose from available 1/0O
interfaces.
Ethernet.

e allows boards to be
networked.

RS232 UART.

e Serial protocol I/O for the
board.
In our case...

* No Ethernet.
e RS232 + UARTLite.

e 9600 Baud. No parity
e 8 Data bits.

Configure additional I/O
interfaces.

SysACE.

* Allows for file storage.

General Purpose 1/0.
* GPIO.

e Used for LEDs, switches,
and push buttons.

In our case...

e Only use the GPIOs for
LEDs, DIPSWs, and

PushButtons (No SysACE).

Peripharal: | OPB GPIC

Perpheral: | OPB GPIC

Configure additional
memory interfaces.

Different types of external
memory.

Often times DDR.

e Large amount of storage. I DOR_256MB 320084, ank_rowt3_col) 125

I~ DOR_512ME_saMX64_ranki_rowl3d coli1_cl2 5

* Cheap.
° Fast. ™ DDA 128MEB 18MXEE ankt row!3 cold ol 8

For this system...

* No external memory.

/\"'\O/‘_/\;\
/

\

Xilinx provides a large
library of peripherals:

I/0
Debug
Busses
Memory
Timers

Interrupts
A/D

In our case...

We will add internal
peripherals at a later time.

Add Paripheral..

_\/___7/\
AFO =

Configuration of software-
related properties of the
system.

I/O Configuration:
 STDIN = UART.
e STDOUT = UART.

Include sample
applications:

* Memory test.

e Peripheral self-test.
In our case...

e Use the defaults.

lon that you would ke te have generated. Each

1 alivenaess and perdorm a basic readiwrite test 1o each memany

Perform & simple salf-test for each padpheral in your systam.

Configuration of
application-related
properties of the system.

Choose where instructions
and data are stored in the
system.

In our case...

e Our system is simple a
single memory for
instructions and a single
memory for data.

e Use the defaults.

The simphe Memory Tesl applicalion wall illusirale syslem aliveness an sl eI

read’wrila test 1o ¥ OUN Memang dovices

Boot saction resides in ilmtn_{! ntir

WARNING

zbion of Dala seclion of this program in ar

v extemal

wgger, boclloader, or ACE File o intialize memary

System configuration 1s
complete.

Displays all of the
included components and
their associated address
spaces.

What are address spaces’!

Why i1s knowing the
address space of a device | |l oo, e
useful? ot e o

LME Bus : LMB V10 Inst, name: lmb
Caore Hame Instance Hame

Click “Generate”...

Congratulations!!!!

* You have just created a custom
SoC!

Now click on “Finish”, and you ik the o bt et 0 P o oo e
can begin... U) oomosmon s o |
e Using the system. |

Iha Base System Hullder has successiully gensraled

your embedded system

* Developing custom HW and
SW for the system.

BSB has just generated a .mhs
file for your system.

* A file that lists all components
and how they are configured .- .
and connected. RSP

This file can be translated
directly to VHDL or Verilog,
and synthesized to the FPGA. | ot |

op Memony.c

pp Memary LinkSerk -

It can be loaded in a fulure wiz

& Applications Actions 3 IL_U [Iﬂ K_n

@ TieMay 20, 135PM @

Xilinx Platform Studio - /users/jagron/388labs/newP roject/system.xmp - [System Assembly View1]

0 Eile Edit View Project Hardware Software Device Configuration Debug Simulation Window Help

NEEEED R EEE R IR I EEIER EEEELS

IREEPIEE R Y
x|

Applications ‘Prujxx:t |\P Catalog |

Platform

<" Project Files
MHS File: system.mhs
~MSS File: system.mss
-~ UCF File: data/system.ucf
~iIMPACT Command File: etc/download.cmd
~Implementation Optiens File: ete/fast_runtims
Bitgen Options File: etc/bitgen.ut
roject Options
Device: xc2vp30fi826-7
- Netlist: TopLevel
Implementation: XPS
~HDL: VHDL
- Sim Model: BEHAVIORAL
=~ Reference Files

Log Files
+Synthesis Report Files

Filters
G
_’; Bus Interface © Ports ¢ Addresses | &= Connection Filters |

+ microblaze_0
+-<#mb_opb

>

>

Pdebug_meodule
>

>

*RS232 Uart_1
#|EDs_4Bit
>DIPSWs_4Bit
FPushButtons_5Bit
“*Imb_bram
“dem_0

[@ System Assembly View1

|Bus Connection |IP Type |IP Version |

mdm 2.00.a

opb_uartlite 1.00.b
opb_gpio 3.01.b
opb_gpio 3.01.b
opb_gpio 3.01.b
bram_block 1.00.a
dem_medule 1.00.a

1
Output |Wamings IErrcrs I

[_] jagron@ shere-khan: ~/388labs/basicMB

[_] jagron@ shere-khan: ~/388labs/basicMB

|_] jagron@ shere-khan: ~/388lahs/basicMB/mi|# Xilinx Platform Studio - /users/jagron/388la

& Applications Actions !-U - - @ 0 Tue May 29, 1:35 PM Q

Xilinx Platform Studio - /users/jagron/388labs/newProject/system.xmp - [System Assembly View1]
[File Edit View Project Hardware Software Device Configuration Debug Simulation Window Help =l

R R EEE] BRI R EEEREER=TE
x|

Filters
i . . =+
Applications | Project | IP Catalog | _’;" Bus Interface ¢ Ports ¢ Addresses | G+ Connection Filters |
*)

& Name | Bus Connection |IF‘ Type |IF‘ Version |
Name v |Versiun 2 < microblaze 0 microblaze C
-<#mb_opb opb v20

>

+-Analog
=-Bus
Bus Bridge
-Clock Contral ! 2debug_module opb_mdm 2.00.a
=

Ry

Communication High-Speed
>

-Communication Low-Speed
-DMA #-<PRS232 Uart_1 opb_uartlite

-Debug LEDs 4Bit oph_gpio
+-<PDIPSWs_4Bit opb_gpio
H-<PPushButtons_5Bit oph_gpio
~<?Imb_bram bram_bleck
-Pdem_0 dem_medule

-FPGA Reconfiguration

-General Purpose 10

-Interrupt Control
-Memeory Block
-Memory Controller
PCI

-Petipheral Controller
Processor

-Reset Control

[0 System Assembly Viewt

<
Cutput |Warning9 IErrors
|

[_]jagron@ shere-khan:~(388labs/basicMB |[_] jagron@ shere-khan:~/388labs/basicMB |[_] jagron@ shere-khan:~/388labs/basicMB/mi # Xilinx Platform Studio - [usersfjagron/388la

& Applications Actions !-U - - \ @ Tue May 29, 1:36 PM Q

Xilinx Platform Studio - /users/jagron/388labs/newProject/system.xmp - [System Assembly View1]

[File Edit View Project Hardware Software Device Configuration Debug Simulation Window Help =13l
DA EBEoeREMRFoR]E 2 PeAR allwe]lx %IE]l £]|=8 mo8]
&

Filters
N . . =+
Applications IF'“'-‘ISCt | IP Catalog | _’;" Bus Interface ¢ Ports ¢ Addresses | G+ Connection Filters |

Software Projects Name | Bus Connection |IF‘ Type |IF‘ Version |
“IJAdd Software Application Project... -Pmicroblaze 0 microblaze 5.00.c

mDefault microblaze O bootloop ¥-<>mb_opb opb_v20
- Wl Default microblaze 0_xmdstub -
um]ecl: TestApp_Memory =

-#\Project: TestApp_Peripheral H-Pdebug_module opb_mdm 2.00.a
s

-

PR5232 Uart 1 opb_uartlite 1.00.b
H-<PLEDs_4Bit oph_gpio 3.01.b
-<PDIPSWs_4Bit opb_gpio 3.01.b
H-<PPushButtons_5Bit oph_gpio 3.01.b
~<?Imb_bram bram_bleck 1.00.a
Pdem_0 dem_medule 1.00.a

[0 System Assembly Viewt

<
Cutput |Warnings IErrors

[_]jagron@ shere-khan:~(388labs/basicMB |[_] jagron@ shere-khan:~/388labs/basicMB |[_] jagron@ shere-khan:~/388labs/basicMB/mi # Xilinx Platform Studio - [usersfjagron/388la

System Assembly View:

e Graphical view of system.

e Can edit configurations, port connections, bus
connections, and memory spaces for all components.

Tabs:
* Project Tab.

e Project info (.mhs, logs, etc.).
e [P Catalog Tab.
e Available peripherals that can be added to the system.

* Application Tab.

e Available SW projects that can be run on the system.

Run An Application

If multiple applications are available, then one
must be selected.

This 1s done on the “Applications” Tab by...

* Right-clicking on the application of choice and
selecting “Mark to initialize BRAMs”.

IMPORTANT:

* Select the program you would like to run (now 1t will
have a green BRAM symbol next to it.

* Now you must always DE-SELECT the other
applications by clicking “Mark to initialize BRAMSs”
(now it will have a red X on it’s BRAM symbol).

How To Run An Application

Select the application of choice.

e Compile the sources for the application.
e Right-click and select “Build Application™.

Execute the test on the base system platform.

* This requires the following to be combined...
e Hardware bitstream (.bit)

e Software executable (.elf)

* This 1s done by selecting “Device Configuration™.
e “Update Bitstream” - combines HW/SW (.bit + .elf).

e “Download Bitstream” - downloads the configuration to the
board.

Over the USB-based JTAG connection.

Build your HW system.

e Done for us using the base system builder.
Use a default SW project.
Click on “download” bitstream.

e This will go through the entire HW/SW build process.
e Build HW

* Synthesize, ngdbuild, map, par, and bitgen.
e Build SW

e Compile and link.

* Then 1t will combine the SW executable and the HW
bitstream and download it to the FPGA.

How do you see what 1s happening on the FPGA?
e Normally in software you use print() statements.
* The output goes to the screen.
In this system, STDIN/STDOUT are routed to the
serial port.

* We must monitor the serial port from an external host
to see what 1s happening.

In order to “see” what 1s executing...
e Open up a terminal window.
e Minicom (Linux) or Hyperterminal (Windows).

* Setup the correct communication parameters
* Baud rate = 9600.

P\ Ay X/

L . o I 1 w_
reatinad New SW /\f\/\ r\p O/\S

& u _~ -

Select “Software™...
e Click on “Add Software Application Project”.

Enter the new project name.
* Also choose which CPU to run the application on.

Now a new application tab entry will appear.
* You can now add/edit sources for this application.

In order to run this new application...
* Right-click on it, Select “Mark to initialize BRAMs”.

 Instructs the tool that this application is to be “combined” with
the bitstream.

e Make sure to de-select all other applications!!!

* Now, when updating the bitstream, this application will
be used.

Custom P Custom [P
Core Core

Interface Bus Interface Systern Bus Interface o
Custom | _Generation _ Integratior MicroBlaze

Custom Custom
HW HW

EDK allows one to add IP cores to a system.
e Pre-built cores from Xilinx.
e Custom cores.

Additionally, there is a Create/Import Core Wizard that...

* Allows one to quickly create bus interfaces for custom IP cores.
 PLB, OPB, FSL interfaces.

* Imports cores into an EDK repository.
e So that the IP cores can be added into a system.

h‘/‘ /—\/‘ __M_
| QP ‘Q/ - O

N A

Select “Hardware”. ..
e Click on “Create/Import Peripheral™.

Creating a new peripheral...

* Peripheral name.
* Bus interface type (PLB, OPB, FSL).

e Interface features:
e Master/Slave.
* Interrupts and Resets.
* Registers.

e Accessible Signals.

Importing a peripheral...

e Not recommended, much easier to do via cut/copy from
the command line.

Create a new SW project...
e Make it do the following...

e Print “Hello <yourName>!" 5 times.

Run the SW on the board and demonstrate
that it works correctly.

This may not seem like much, but...
* You just created a SoC (System-On-Chip).

* You just cross-compiled a program to run on
“bare-metal” (no OS).

B BB | = gy

To send output over the UART there are 3 types
of “print” statements.

print

e Usage: print(“hello\r\n”);

* Only takes a single string as an argument.

* Lightweight print (small executable footprint).
printf

e Normal printf (large executable footprint).
xil_printf

* Lightweight printf (small executable footprint).

Juestions

- _/ T

What is an FPGA?

What is an SoC? Why is 1t different from your
desktop computer system?

What does soft-core IP mean?
What 1s an MHS, MSS, and UCEF ftile?
What does cross-compile mean?

Why does it take so long to build the HW
portion of your system?

How does the desktop computer program the
FPGA, how does it monitor the FPGA?

