Creating/Using Custom IP Cores
By Jason Agron

Basic Outline:

This document describes how to create and add a custom IP core to the On-Chip
Peripheral Bus (OPB) within EDK/XPS. The custom IP core that we will generate is a
very simple device consisting of a single control register and 4 general-purpose registers.

The basic steps in creating a custom IP core are:

1)
2)
3)

4)
5)
6)

Start the “Create/Import Peripheral Wizard”.

Select a name for the IP core.

Select the bus interface of the IP core.

a. PLB, OPB, or FSL interface.

Select the basic services (if any) to be added to the IP core.

Select which extra bus interface signals (if any) to be added to the IP core.
Select which language to use when generating the IP core.

a. VHDL or Verilog.

The basic steps in adding a custom IP core to an existing system are.

1)
2)
3)

4)

Go to the “IP Catalog” Tab and expand the options for “Project Repository”.
Right-click on the IP core of interest and select “Add IP”.

Go to the “Bus Interface” view of “System Assembly View” and connect the IP
core to the proper bus.

Go to the “Address” view of the “System Assembly View” and set the address
space for the IP core.

Detailed Steps:

The first step in creating a custom IP core is to start up the “Create/Import Peripheral
Wizard”. This can be done by first clicking on “Hardware” at the top-level menu of XPS
and then selecting “Create or Import Peripheral.

rFIIe E-:Ill '-'law Pregect | Hardware Software Device Configuration Detug Sim
1A EL[E BeEs D 18 |

S Genarate Meatlist 2 [[]| B

Filters

A Ganarabe Bitstream E
- | Bus Int

Project l Applications | IF
BN Create or Impor Peripheral

Platf cem =]

B Configure Coprocessor L.

Deibug Configumation

— Projest Files
MHS Fila: syatesn.mh
MES Fila: ayaten. ms Check and View Core Licenses,

~

UCE Fie: dala‘syslen !rf'— Clean Netlst
IMPACT Command F
Implameration Optio
Bilgen Options Fila: @ £+ Clean Hardware

..';\- Clean Bits

- Praject Opticns
Davicn: xc2vpIoHass-7

v BB

L 2

Now, the “Create/Import Peripheral Wizard” will launch, click “Next” to continue.

Create and| Import Peripheral Wizard - Welcome

Welcome to the Create and Import Peripheral
Wizard

This wizard will help you create and import a user peripheral for use in processor systems developed using
the EDK.

Tocontinue, click Next.

More Info < Back | Next = | Cancel |

Now, the wizard gives you a choice to either create a new peripheral or import an
existing one. We will be creating our own custom peripheral from scratch so select
“Create Templates For New Peripheral” and click “OK”.

Create and Import Peripheral Wizard|- Peripheral Elow.

Peripheral Flow

Indicate if you want to create a new peripheral or import an existing peripheral. @

This tool will help you create templates for a new EDK compliant peripheral, or help you import an existing peripheral into an XPS project or
EDK repository. The interface files and directory structures reguired by EDK will be generated.

—Select flow
& Create templates for a new peripheral

" Import existing peripheral

[~ Flow description

This tool will create HDL templates that have the EDK compliant
port/parameter interface. You will need to implement the body of

the peripheral.

More Info | < Back | Next = | Cancel

The wizard should now show a prompt asking you where you would like to store your
custom peripheral. XPS allows you to store peripherals in a project repository (a library

of peripherals) or it can store peripherals within the XPS project itself. We will choose
the option to store the peripheral within the XPS project as shown in the next figure.

Repository or Project

Indicate where you want to store the new peripheral

&

A new peripheral can be stored in an EDK repository, or in an XPS project. When stored in an EDK repository, the peripheral can be
accessed by multiple XPS projects.

€ To an EDK user repository (Any directory outside of your EDK installation path)

Repository I

@ To an XPS project

Project: I users/jagron/388labs/chipscopeMB

fusersfjagr pscopeMB/pcores

~Peripheral will be placed under: ‘

More Info < Back | Next > | Cancel |

After selecting “OK”, the wizard will prompt you for the name and version number of the
new peripheral. The name must not have any spaces and must be in all lower case letters.
The version numbers should be left at their default. The purpose of version numbers is to
allow multiple versions of an IP core to exist in different forms.

Name and Version

Indicate the name and version of your peripheral

&R

Enter the name of your peripheral. This name will be used as the top HDL design entity,

Name: Iopb_cusmmcore
Version: 1.00.a

Major revision Minor revision: Hardware/Software compatibility revision

W o g . 9

~Logical library name: opb_customcore vi_00 a

All HDL files (either created by you or generated by this tool) used to implement this peripheral must be compiled into the logical library
named above. Any other legical libraries referred to in your HDL are assumed to be available in the XPS project where this peripheral is
used, or in EDK repositories indicated in the XPS project settings.

More Info < Back | Next = | Cancel |

The next step in the process is to select which type of bus interface (often called IPIF —
meaning [P Interface) the IP core will use. In the case of MicroBlaze based systems, the

main system bus in the On-Chip Peripheral Bus, or OPB, so we will use an OPB IPIF
attachment as shown in the following figure.

Create Peripheral - Bus Interface

Bus Interface

Indicate the bus interface supported by your peripheral. w2

To which bus will this peripheral be attached?

F‘anhip Peripheral Bus EOPB)E
£~ Processor Local Bus (PLB)

£ Fast Simplex Link (FSL)

-ATTENTION

Reter to the following documents to get a better understanding of how user peripherals connect to the CoreConnect{TM) buses through
the IPIF interconnection standards.

CoreConnect Specification

OPB IPIF Specification for slave only peripherals

OPB IPIF Spesification for master/slave peripherals

PLB IPIF Specification for slave only peripherals
PLE IPIF Specification for master/slave peripherals

ESL IPIF Specification for master/slave peripherals

NQTE: Other bus interfaces are not supported by the wizard in this release.

More Info < Back I Next > I Cancel |

The next wizard screen allows one to choose which of the optional IPIF services to
include within the interface for the new peripheral. The IPIF is a parameterizable
interface that helps to simplify interactions with the bus. Some of the commonly used
options for the OPB IPIF include:

* The ability to perform burst transactions.

¢ Built-in FIFO logic.

* Automatic address decode support.

* Reset and MIR (hardware version #) registers.

* Built-in interrupt support.

* Built-in support for software-accessible registers.

In our IP core, we will only use the support for the Reset and MIR as well as the User
Logic SW register support. Select these two options (and de-select all others) and click
“Next” as shown in the following figure. The IP core that we generate will be organized
in the following fashion:

* A top-level file named opb_customcore.vhd that connects:
o The OPB_IPIF.
= The bus interface wrapper.
o The user logic file.
= Contains the actual “logic” of the IP core.
= (Can be in VHDL or Verilog.

pheral - IPIE Services

IPIF Services
Indicate the IPIF services required by your peripheral. @

Your peripheral will be connected to the OPB bus through the OPB IP interface (IPIF) module. Besides standard functions like address
decoding, this medule also offers other commenly used services. Using these services may significantly simplify the implementation of your

peripheral.
—Basic slave service and support ————— ~Advance slave sernvice and support
Common and typically required by most Typically required by peripherals that need
peripherals for operations like logic data buffering or multiple memory/address
control, status repert, and ete. Spaces access.

™ Burst transaction support

aiBo Jesn

I™ User logic interrupt support " EIFO

sng [eisydusg diys-ug

¥ User logic S/W register support I™ User logic address range support

—Master service and support

Typically required by complex peripherals like Ethernet and PCI for command data transfers
between regions.

I~ DvA

€ Simple mede

" Packet mode Scatter Gather

Morelniol < Back | Next = | Cancel |

By selecting “User Logic SW Register Support” in the previous wizard window we have
enabled the automatic placement of registers within our user logic. Now we must
configure the size and number of registers in our IP core. For our use, choose 4, 32-bit
wide registers and disable posted write behavior as shown below.

Create Peripheral - User 5/W Register.

User S/W Register
Configure the scftware accessible registers in your peripheral. \/\41?

The scoftware accessible registers will be implemented in the user-logic module of your peripheral. These registers are addressable on the
byte, half-word or word boundaries. The tollowing fields determine the characteristics of the registers.

Number of software accessible registers: e

Data width of each register: |E2 'I bit

~Write Mode

Instead of the usual acknowledge write behavicr, an alternative kind of write behavior, posted write, is also supported. Under the posted
write behavior, the IPIF unconditionally acknowledges the write transactions to the OPB on the earliest clock cyele, thus reduces latency
and improves performance. When posted writes are enabled, it is assumed that the custom user logic will retire the data immediately to

local storage.

" Enable posted write behavior
* Disable posted write behavior for normal acknowledged write behavior

© Allow dynamic posted/acknowledged write behavior controlled by user logic (IP2Bus PostedWrinh)

Meore Info | < Back | Next = I Cancel

The next wizard slide allows us to add extra bus signals to our IP core to allow the IP
core to use extended features of the bus. In this lab we will not be using any advanced
features of the bus, so we will just click “Next” and not modify any of the signals.

Create P onnect (IPIC)

IP Interconnect (IPIC)
Select the interface between the logic to be implemented in your peripheral and the IPIF @

Your peripheral is connected to the bus through a suitable IPIF medule. Your peripheral interfaces to the IPIF through a set of signals called
the IP interconnect (IPIC) interface. Some of the ports are always present. You can choose to include the others based on the functionality
required by your peripheral.

Note: all IPIC ports are active high.

O |p2Bus Clk +| ~Bus2IP_Addr

OPB or PLB bus Bus2IP_Clk This is the address bus from the IPIF to the user
Bus2lP_Reset logic. This bus is the same width as the host bus
== O Bus2IP_Freeze address bus. The Bus2IP_Addr bus can be used
PIF us2IP_Addr for additional address decoding or as input to
Bus2IP_Data addressable memory devices.
Bus2IP_BE
O Bus2lP_Burst
. O BusalP_RNW
— LOgEC O Bus2lP_cs
|| O Bus2lP CE

RnedlP RACE =l

Restore Defaults
More Info < Back | Next = | Cancel |

The next wizard slide allows one to choose to generate a BFM (Bus Functional Model)
simulation for the new IP core. The BFM is a high-level simulation model (or testbench)
used to test entire bus-based systems. We will not use a BFM simulation model in this
lab, so we can de-select the option and click “Next”.

Simulation Support

(OPTIONAL) Peripheral Simulation Support
Generate optional files for simulation using Bus Functional Models (BFM) @

The EDK provides a BFM simulation platform to help you simulate your peripheral. Indicate if you want this tool to generate the appropriate
HOL and Bus Functienal Language (BFL) stimulus file for the target bus.

OPB Device (master) r?generate BFM simulation platform for ModelSim-SE or Mode\Sim-PE?
spch| OPB Devics (siave) —— ek This feature requires that you have accepted the associated IBM license agreement and
i installed the BFM toolkit. The link below shows how:

OPB Monitor +————+

BEM Toolkit Installation Instructicns

rasat
o

Meore Info < Back | Next = | Cancel

The next wizard slide allows one to choose implementation options for the IP core such
as generating a separate synthesis project and choosing which language to generate the IP
core in. The default values for this slide generate the IP core in VHDL and generate a

synthesis project as well as template driver files for the IP core. We will use the defaults
and click “Next”.

(OPTIONAL) Peripheral Implementation Support

Generate optional files for hardware/software implementation

%

Upon completion, this tool will create synthesizable HDL files that implement the IPIF services you requested. A stub 'user_logic' module will
be created. You will need to complete the implementation of this medule using standard HDL design flows. The tool will also generate EDK
interface files (mpd/pao) for the synthesizable templates, so that you can hook up the generated peripheral to a processor system

Note

Peripheral (VHDL)
Should the peripheral interface (ports/parameters) or file list change, you will need to regenerate the
EDK interface files using the import functionality of this tool.

IPIF (VHDL)
r Generate stub 'user_logic' template in Verilog instead of VHDLE
T P Generate |SE and XST project files to help you implement the peripheral using XST flow
User Lagic
{VHDL) B2 et template driver files to help you implement software interface

More Info < Back | Next = | Cancel |

Now, we have finished setting up the IP core template. The next wizard slide allows one
to complete the generation of the IP core, which will automatically add the IP core to the
“Project Repository” under the “IP Catalog” tab by clicking on “Finish”.

Congratulations!

When you click Finish, HDL files representing your peripheral will be generated. You will have to
implement the functienality of your peripheral in the stub user_logic' template file.

IMPORTANT: If you make any interface changes to the generated peripheral (including peripheral name,
version, ports and parameters), or any file changes (add or remove files), you will need to regenerate the
EDK interface files by using this tocl in the Import mode,

peripheral hardware templates

under /users/jagron/388labs/chipscopeMB/pcores/opb_customcore_vl 00_a and
peripheral software templates

under /users/jagron/388labs/chipscopeMB/drivers/opb_customcore_vl_00_a
respectively.

Thank you for using Create and Import Peripheral Wizard! Please find your j

Peripheral Summary:

top name : opb_customcore
version : 1.00.a

type : OPE slave
features : slave attachement

mir/rst register 52
'i 4] | 3

More Info < Back | FEinish I Cancel |

The next step is to add this new IP core to an EDK system. First, go to the “IP Catalog”
tab, and then expand the options for “Project Repository”. You should now see the
newly generated IP core in the list. Right-click on it and select “Add IP” to add the core

to the system.

“Project Repository

opb customcore 1.00.a

EEERE) EE TR R e TP Ee

“Reset Control
+Timer View MPD
+-Utility I

The next step in the process is to connect the IP core to the system bus. Go to “System
Assembly View” in the top-right quadrant of XPS and select “Bus Interface” view. The
newly added IP core can be connected to the bus by setting its bus interface connection
by clicking on the hollow green circle. This will make the circle solid which means that
the bus connection has been made.

l - ®:opb_customcore 0

" SOPB

ST s P e T T oo

1.00.a

opb_customcore

mb opb

Now the IP core has been connected to the bus, but we still need to set its address space.
To do this, first go to the “System Assembly View” and choose the “Addresses” view.
Next, we will lock the address ranges of all the other system peripherals except for the
newly added IP core.

Filters

@ |
= if“ Bus Intefface ¢ Ports @ Addresses | &l Generate Addresses |

Name |Address IBaseAddress High Address |Size |Lcck IBus Connection |IF’ Typ!IF’ Version |Instance

u [N mb_ophb

SLMB 0x 00000000 Ox D0003fff 16K dimb dimb_cntlr

SLMB 0x 00000000 O 000031 16K iimb iimb_cntlr

| N mb_opb opb_customcors 0
SOPE 0x40000000 Ox4000ffff B4K mb_opb LEDs_4Bit

SOPB 0x40020000 Ox4002ffff B4K mb_opb DIPSWs_4Bit
SOPB 0x40040000 Ox40041fff B4K mb_opb PushButtons_5Bit
SOPB Ox40600000 Ox40B0ff 84K mb_opb RS232 Uart 1
SOPB Ox1 400000 O 1 4 OFfff B4K mb_opb debug_module

Now, we can safely click on the “Generate Addresses” button without changing the

addresses of any of our other peripherals. By doing this, the XPS tool automatically
assigns the newly added IP core an address range by looking at its parameters specified in
the core’s .mpd file. Make sure to remember and/or write down the address range of the

new IP core because this value will be needed when we write software to interact with the
IP core.

Filters
®|
= iiﬁ Bus Interface © Ports & Addresses

[l Generate Addresses |

Name |Address |Base Address |High Address ISize |Loc|Generate Addressesﬂ IP Typ! IP Version |Instance

U O mb_ophb
SLMB 0x 00000000 0x00003fff 16K dimb dimb_cntlr
SLMB 000000000 0x00003fff 16K iimb ilmb_cntlr
SOPB 0x40000000 Ox4 000ffff B4K mb_opb LEDs_4Bit
SOPB 0x40020000 0x4002ffff 64K mb_opb DIPSWs_4Bit
SOPBE 0x40040000 Ox4 0041fff B4K mb_opb PushButtons_5Bit
SOPB 0x40600000 Ox4060ffff 84K mb_opb RS232 Uart 1
SOPBE Ox41400000 Oxd1 40ffff B4K mb_opb debug_meodule

0x77000000 Ox7700ffff

mb_opb opb_customcora 0

Now, the IP core has been fully connected to the system bus. Re-build the hardware
platform (by selecting “Update Bitstream™). The next step is to create a new software
application that will interact with the IP core. Here are some much-needed facts about
the IP core’s functionality:

* The IP core has 4 SW-accessible general-purpose (GP) registers.
o Reg0 = base + 0x0.
o Regl =base + 0x4.
o Reg2 =base + 0x8.
o Reg3 =base + 0xC.
o These registers are readable/writeable.
* The IP core has a write-only reset register.
o Located at base + 0x100.
o Writing the code “0x0000000A” to the reset register will automatically set
all of the GP registers to 0.

The software “driver” that you will create must do the following:

a. Reset all of the GP registers using the “Reset Command”.
b. Infinite Loop:
i. Write values into each GP register.
ii. Display values in each GP register via STDOUT.
iii. Send “Reset Command” to IP core.
iv. Display values in each GP register via STDOUT.

Additionally the code to reset the IP core and the code to write and read GP registers
MUST be encapsulated within functions!!!! This will enhance both the readability and
maintainability of your code.

