
104 Computer

E M B E D D E D C O M P U T I N G

D esigners of embedded and
real-time systems are contin-
ually challenged to meet
tighter system requirements
at better price-performance

ratios. Best-practice methods have
long promoted the use of commercial-
off-the-shelf components to reduce
design costs and time to market, but
creating COTS components that are
reusable in a wide range of applica-
tions remains difficult.

In part, the challenge lies in satisfy-
ing the contradictory design forces of
generalization and specialization. Sys-
tems designers are all too familiar with
the tension these opposing forces cause
in trying to balance cost versus perfor-
mance. Adopting COTS components
reduces costs and time to market but
often fails to meet the most demand-
ing performance requirements; cus-
tom-designed components can achieve
significantly higher performance but at
greater development costs and longer
times to market.

HYBRID CPU/FPGA CHIPS
Emerging hybrid chips containing

both CPU and field-programmable gate
array (FPGA) components are an excit-
ing new development. They promise
COTS economies of scale while also
supporting significant hardware cus-
tomization. For example, the Virtex II
Pro from Xilinx (www.xilinx.com)
combines up to four Power PC 405

cores with up to approximately 4 mil-
lion free gates, while the Excalibur from
Altera (www.altera. com) combines an
ARM 922 core with about the same
number of free gates.

Designers can configure the free
FPGA gates with a widening range
of standard FPGA system library com-
ponents. This intellectual property
includes serial and parallel I/O inter-
faces, bus arbiters, priority interrupt
controllers, and DRAM controllers.
The IP components let designers select
an FPGA IP set to create a specialized
system-on-chip. SoC solutions can
achieve COTS economies of scale with
IP selected to meet specific system re-
quirements.

The free FPGA gates can also sup-
port customized application-specific
components for performance-critical
functions. While FPGA-based imple-
mentations do not perform as well as
equivalent ASICs, they can often pro-
vide acceptable performance with a sig-
nificantly better price-performance
ratio.

FPGA COMPONENT SPECIFICATION
Tapping the full potential of these

hybrid chips presents an interesting
challenge. System developers can re-
place current COTS board designs with
a single hybrid chip, but specifying cus-
tom components within the FPGA
requires knowledge of hardware design
methods and tools that most system
programmers do not have.

Researchers are seeking solutions to
this problem by investigating new
design languages, hardware/software
specification environments, and devel-
opment tools. Projects such as Ptolemy
(ptolemy.eecs.berkeley.edu/), Rosetta

(sldl.org), and System-C (systemc.org)
are exploring system-level specification
capabilities that can drive software
compilation and hardware synthesis.

Other projects such as Streams-C
(rcc.lanl.gov/Tools/Streams-C/index.
php) and Handel C (www.celoxica.
com) focus on raising the abstraction
level for programming FPGAs from
gate-level parallelism to modified and
augmented C syntax. System Verilog
(eda.org/sv-cc/) and a newly evolving
VHDL standard (eda.org/vhdl-200x/)
attempt to abstract away the distinction
between the two sides of the traditional
low-level hardware/software interface
into a system-level perspective.

Although these approaches differ in
the scope of their objectives, they all
share the goal of raising the abstrac-
tion level required to design and inte-
grate hardware and software com-
ponents.

Crossing the boundary
A question remains as to whether

high-level FPGA programming lan-

Programming
Models for Hybrid
CPU/FPGA Chips
David Andrews and Douglas Niehaus, University of Kansas
Peter Ashenden, Ashenden Designs

Components that combine a
CPU and reconfigurable logic
gates need a programming
model that abstracts the
computational hardware.

January 2004 105

threads distributed flexibly across the
system CPU and FPGA assets. At the
highest abstraction level, the compu-
tational structure of hybrid applica-
tions remains familiar. Whether the
threads implementing a computation
are CPU- or FPGA-based becomes just
another design and implementation
parameter with resource use and appli-
cation performance implications.

How to perform this partitioning to
best support application or system
requirements is yet another challeng-
ing problem. However, the model sup-
ports iterative application development
that begins with an exclusively CPU-
based multithreaded implementation
and gradually transferring specific
threads to FPGA support.

All of these attributes speed the time
to market. They also let designers focus
FPGA support on those portions of the
application that performance mea-
surements indicate will benefit most
from it.

Policy and mechanisms
We can draw a useful distinction

between policy and mechanism. The
multithreaded model policy is fairly
simple: to allow the specification of
concurrent execution threads and pro-
tocols for accessing common data and
synchronizing the execution of inde-
pendent threads. The mechanisms that
a general-purpose processor uses to
achieve this policy include the defini-
tion of data structures that store thread
execution state information and the
semantics of thread synchronization
interactions with the operating system
thread scheduler.

Both the synchronization and the
thread-scheduling portions of the sys-
tem software access data structures for

semaphore control and thread context.
In addition, most microprocessors pro-
vide the minimum hardware support
required to implement atomic sema-
phore operations—for example, test-
and-set or compare-and-swap support.

The FPGA computational model is
expressed at an abstraction level dif-
ferent enough from that of the CPU to
leave no immediately obvious equiva-
lent to the CPU thread context of reg-
ister set, program counter, and stack
pointer. Additionally, current FPGA
technology synthesizes the data paths
and operations that represent the
thread computations and maps them
into the FPGA before runtime.

These differences require new mech-
anisms for achieving the basic multi-
threaded model policy relative to
threads running within the FPGA and
threads interacting across the CPU/
FPGA boundary. Although the lack of
an existing computational model
seems to be a liability at first glance, it
actually presents an opportunity to cre-
ate efficient mechanisms for imple-
menting FPGA threads and for sup-
porting thread synchronization.

OPERATING SYSTEM CODESIGN
A key challenge in giving program-

mers access to these new hybrid com-
putations is extending the operating
system across the CPU/FPGA boundary
in a form that abstracts the differences
between the computational models
used within the CPU and FPGA com-
ponents.

Operating systems provide the
underlying synchronization and con-
trol mechanisms for higher-level pro-
gramming models as well as a generic
set of interfaces through which appli-
cation programs can access system
functions. These OS functions relieve
application programmers from need-
ing to know the low-level protocols
and device-specific requirements. For
hybrid systems, this functionality will
require hardware/software codesign
across the CPU/FGPA boundary.

System developers have always
regarded OS codesign as a means to

guages will mature to a point that lets
software engineers apply their skills
across the CPU/FPGA boundaries.

Unfortunately, current hybrid pro-
gramming models are still immature.
They generally treat FPGAs as inde-
pendent accelerators with computations
outside the scope of the programs run-
ning on the CPU. They generally use
simple I/O queues for communications
between the FPGA-based and CPU-
based computations, and the hybrid
model is not mature enough for syn-
chronizing the execution of component
computations—a critical capability in
distributed and parallel computation.

A mature high-level programming
model would abstract the CPU/FPGA
components, bus structure, memory,
and low-level peripheral protocols into
a transparent system platform. In gen-
eral, programming models provide the
definition of software components as
well as the interactions between these
components, as Edward Lee described
in a discussion of embedded systems’
software frameworks (“What’s Ahead
for Embedded Software?,” Computer,
Sept. 2000, pp. 18-20).

Message passing and shared-memory
protocols are two familiar component
interaction mechanisms. Practitioners
have successfully used both in embed-
ded systems and enjoy debating the rel-
ative merits of their personal choice. We
describe the multithreaded shared-
memory model here, though many
aspects of the discussion are equally
appropriate for the message-passing
model.

MULTITHREADING MODEL
The multithreaded programming

model is convenient for describing
embedded applications composed of
concurrently executing components
that synchronize and exchange data.
Its popularity is apparent in the wide-
spread use of the Posix threads stan-
dard.

High-level abstraction
The multithreaded programming

model specifies applications as sets of

The programming
model suports

iterative application
development.

106 Computer

FPGA codesign can also reduce
scheduling jitter, or variable delays of
the scheduling decision. Jitter can orig-
inate from several sources, including
variable execution time of system soft-
ware, existing mechanisms used to
implement interrupt-handling meth-
ods, task scheduling, and concurrency
control. FPGA-based implementation
of some of these OS functions will sig-
nificantly reduce system overhead by
transferring computational loads from
the CPU into FPGA-based concurrent
state machine components.

These and many other possibilities
make codesign of OS functions an
exciting area of current research.

S ystem-level multithreaded pro-
gramming requires new hardware/
software codesign approaches that

support operating system and applica-
tion functions. Current efforts to
develop this capability will make hybrid
CPU/FPGA computational components
accessible to a much broader commu-
nity of system programmers, increasing

increase system performance through
parallelism and to improve the pre-
dictability of system behavior. Thus,
the codesign work required to enable
a hybrid programming model can also
enhance general OS performance.

Function migration
to FPGA domain

A wide range of OS functions will
certainly benefit from either a partial
or a complete migration into the FPGA
domain. Examples include receiving
and evaluating interrupts, time keep-
ing, event queue management, task
scheduling, clock synchronization,
support for distributed computation,
and concurrency control. FPGA sup-
port can increase accuracy, perfor-
mance, and predictability.

System benefits
In this context, FPGAs provide a

means to refine system properties such
as the resolution and precision of the
system time standard. This translates
to finer event scheduling, a fundamen-
tal aspect of any real-time system.

OS performance and reducing design
times and development costs. ■

Acknowledgment
The work is partially sponsored by

NSF EHS contract # CCR-0311599.

David Andrews is an associate profes-
sor of electrical engineering and com-
puter science at the University of
Kansas. Contact him at dandrews@
ittc.ukans.edu.

Douglas Niehaus is an associate pro-
fessor of electrical engineering and
computer science at the University of
Kansas. Contact him at niehaus@ittc.
ukans.edu.

Peter Ashenden is director of Ashen-
den Designs. Contact him at peter@
ashenden.com.au.

E m b e d d e d C o m p u t i n g

Editor: Wayne Wolf, Dept. of Electrical Engi-
neering, Princeton University, Princeton,
NJ, 08544-5263; wolf@princeton.edu

