CLC section - Survey

From ResiliNetsWiki
Jump to: navigation, search

[Srivastava-Motani-2005 (doi) .]

V. Srivastava, and M. Motani
“Cross-layer design: a survey and the road ahead ”,
"Communications Magazine, IEEE", vol.43, #12, December 2005, pp. 112-119

ResiliNets Keywords: interactions, cross-layer design

Abstract: "Of late, there has been an avalanche of cross-layer design proposals for wireless networks. A number of researchers have looked at specific aspects of network performance and, approaching cross-layer design via their interpretation of what it implies, have presented several cross-layer design proposals. These proposals involve different layers of the protocol stack, and address both cellular and ad hoc networks. There has also been work relating to the implementation of cross-layer interactions. It is high time that these various individual efforts be put into perspective and a more holistic view be taken. In this article, we take a step in that direction by presenting a survey of the literature in the area of cross-layer design, and by taking stock of the ongoing work. We suggest a definition for cross-layer design, discuss the basic types of cross-layer design with examples drawn from the literature, and categorize the initial proposals on how cross-layer interactions may be implemented. We then highlight some open challenges and new opportunities for cross-layer design. Designers presenting cross-layer design proposals can start addressing these as they move ahead."

[Kliazovich-Devetsikiotis-Granelli-2008 .]

D. Kliazovich, M. Devetsikiotis, and F. Granelli
“ Formal Methods in Cross Layer Modeling and Optimization of Wireless Networks: State of the Art and Future Directions ”,
"Heterogeneous Next Generation Networking: Innovations and Platforms, IDEA Group Inc., 2008."

ResiliNets Keywords: formal methods, cross-layer design

Abstract: "The layering principle has been long identified as a way to increase the interoperability and to improve the design of telecommunication protocols, where each layer offers services to adjacent upper layers and requires functionalities from adjacent lower ones. In the past, layering has enabled fast development of interoperable systems, but at the same time limited the performance of the overall architecture, due to the lack of coordination among layers. This issue is particularly relevant for wireless networks, where the very physical nature of the transmission medium intro- duces several performance limitations for protocols designed for wired networks. To overcome these limitations, a modification of the layering paradigm has been proposed, namely, cross-layer design, or “cross-layering.” Several cross-layering approaches have been proposed in the literature so far. Nevertheless, little formal characterization of the cross-layer interaction among different levels of the protocol stack is available yet. A clear need exists for identifying approaches able to analyze and provide quantitative guidelines for the design of cross-layer solutions, and, more importantly, to decide, in each case, whether cross-layering represents an effective solution or not. This chapter provides a detailed survey of the state-of-the-art and future directions in the usage of formal methods for cross-layer modeling and optimization of wireless networks. The text starts by detailing the principles of layered (ISO/OSI and TCP/IP) protocol stacks as well as the cross-layer paradigm. An overview of the architectures of existing and perspective wireless networks is presented along with an analysis of the potential limitations deriving from the layering approach and detailed description of possible optimization solutions enabled by cross-layer design. Subsequent sections are devoted to the issues of modeling and optimization of wireless networks. The remaining sections cover performance optimization as well as architecture optimization (specifically in terms of signaling). The chapter ends with a summary and outlines about future directions of research on the topic"

Personal tools