
MODERN SYSTEM-ON-A-CHIP (SoC) design

shows a clear trend toward integration of multi-

ple processor cores. The SoC system driver sec-

tion of the International Technology Roadmap for

Semiconductors (http://public.itrs.net) predicts

that the number of processor cores in a typical

SoC will increase fourfold per technology node

to match the corresponding applications’ pro-

cessing demands. Typical multiprocessor SoC

(MPSoC) applications, such as network proces-

sors, multimedia hubs, and baseband telecom-

munications circuits, have particularly tight

time-to-market and performance constraints that

demand a very efficient design cycle.

This article, derived from a paper presented

at the 39th Design Automation Conference,1

describes a component-based design automa-

tion approach for MPSoC platforms.

MPSoC platform model
Our conceptual model of the MPSoC plat-

form, shown in Figure 1a, includes four types of

components: software tasks; processor and IP

cores; and an IP core for a global, on-chip inter-

connect. Moreover, to complete the MPSoC

platform, we include hardware and software

elements that adapt platform components to

one another. MPSoC platforms are quite differ-

ent from single-master processor SoCs

(SMSoCs). For example, their implementation

of system communication is more complicated

due to heterogeneous processors, and complex

protocols and topologies. The hardware adap-

tation layer must deal with several issues:

� In SMSoC platforms, most peripherals

(except direct-memory-access controllers)

operate as slaves. MPSoC platforms can use

many different types of processor cores,

making sophisticated synchronization nec-

essary to control shared communication

among several heterogeneous masters.

� Whereas most SMSoC platforms use simple

master-slave shared-bus interconnects,

MPSoC platforms often use several complex

system buses or micronetworks as global

interconnects. The multimaster architecture
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used in MPSoC platforms allows a separation

between computation and communication

design. Communication coprocessors and

controllers (masters) implement high-level

communication protocols in hardware and

execute them in parallel with the computa-

tion executed on processor cores.

Software developers typically organize appli-

cation software as a stack of layers running on

each processor core, as Figure 1b shows. The

lowest layer contains drivers and low-level rou-

tines to control and configure the platform. The

middle layer can use any commercial embed-

ded operating system, configured according to

the application. The upper layer is an applica-

tion programming interface (API) that provides

predefined routines for accessing the platform.

All these layers correspond to the software

adaptation layer in Figure 1a. Designers can

then isolate coding of application software

from the design of the SoC platform. One of the

main contributions of our work is to consider

the same layered approach for dedicated soft-

ware—often called firmware. Firmware is the

software that controls the platform and, in some

cases, executes some application functions that

are not performance critical. Because of code

size and performance concerns, it is not realis-

tic to use a generic operating system as the mid-

dle layer. A lightweight custom operating

system, supporting an application- and plat-

form-specific API, is necessary. Custom-operat-

ing-system design automation is a new research

area motivated by MPSoC platform design.2

Software and hardware adaptation layers

isolate platform components, thus enabling the

concurrent development of the components in

Figure 1c . With this scheme, the software devel-

opers use APIs for both application and dedi-

cated software development. The hardware

design team uses abstract interfaces from com-

munication coprocessors and controllers. The

SoC design team can concentrate on imple-

menting hardware and software abstraction lay-

ers for the selected IP communication

interconnect. Designing such hardware-soft-

ware abstraction layers constitutes a major

effort, and design tools are lacking. Established

EDA tools are not well adapted to this new

MPSoC design scenario; consequently, many

challenging requirements are emerging:

� Higher abstraction level. It is too time-consum-

ing to model at RTL and verify the intercon-

nection between multiple processor cores.

� Higher-level programming. MPSoCs will

include hundreds of thousands of dedicat-

ed software (firmware) lines. Developers

cannot program this software at the assem-

bly level, as they do today.

� Efficient hardware-software interfaces.

Designers must optimize microprocessor

interfaces, register banks, shared memories,

software drivers, and operating systems for

each application.
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System-level design flow
Here we discuss current SoC design method-

ologies, using the template design flow in

Figure 2. The basic principle behind this flow is

the separation between communication and

computation refinement for platform and com-

ponent-based design.3,4 The flow has five main

design steps:

1. System specification. System designers and

customers agree on an informal model for

the application’s functionality and require-

ments. On the basis of this model, system

designers build a more formal specification

that the customers can validate.

2. Architecture exploration. System designers

build an executable model of the specifi-

cation and iterate through a performance

analysis loop to determine the hardware-

software partitioning for the SoC architec-

ture. This executable specification uses an

abstract platform comprising abstract mod-

els for hardware and software components.

For example, an abstract software model

can concentrate on I/O execution profiles,

most-frequent-use cases, or worst-case

scheduling. Transaction-level or behavioral

models can describe abstract hardware.

This step produces the golden architecture

model—either a customization of an exist-

ing SoC platform or a new architecture cre-

ated by system designers after selecting

processors, the global communication inter-

connect, and other IP components. After

system designers define the hardware-soft-

ware partitioning, software and hardware

development can occur concurrently.

3. Software design. Because the final hardware

platform will not be available during soft-

ware development, the software design team

must use a hardware abstraction layer or API.

4. Hardware design. Hardware IP designers

work at RTL to implement the functionality

described by the abstract hardware models.

Hardware IP components can use specific

interfaces for a given platform or standard

interfaces—for instance, the virtual com-

ponent interface (VCI) defined by the

Virtual Socket Interface Alliance (VSIA,

http://www.vsi.org).

5. Hardware-software integration. The golden

architecture model specifies performance

constraints to ensure good hardware-soft-

ware integration. SoC designers create hard-

ware and software interfaces to the global

communication interconnect that conform

to these constraints.

SoC design automation strategies
Many academic and industrial papers pro-

pose tools for SoC design automation that

incorporate many of the preceding design

steps. Most approaches fall into one of three

groups: system-level synthesis, platform-based

design, or component-based design.

System-level-synthesis methodologies are

top-down approaches; synthesis algorithms pro-

duce the SoC architecture and software mod-

els from a system-level specification. Brunel et

al. propose a process for refining hardware-soft-

ware communication; it uses an extended

Kahn process network model for design step 1,5

virtual component codesign (VCC) for step 2,6

callback signals over a standard real-time oper-

ating system for the API in step 3, and VSIA

interfaces for steps 4 and 5. 

SpecC, a specification language and design

methodology, proposes a full set of synthesis

tools:7 It uses an untimed functional specifica-

tion model written in extended C for design

step 1, and performance estimation for a struc-

tural architecture model for step 2. It uses C

code synthesis for step 3, and behavioral syn-

thesis for step 4. SpecC performs step 5 using

hardware-software interface synthesis based on

a timed bus-functional communication model. 

Platform-based design is a meet-in-the-mid-

dle approach; it starts with a functional system

specification and a predesigned SoC platform.

Performance estimation models can help ana-

lyze different mappings between the function-

al modules of the application and the platform

components. During these iterations, designers

can try different platform customizations and

functional optimizations. VCC can produce a

performance model using a functional descrip-

tion of the application and a structural descrip-

tion of the SoC platform for design steps 1 and

2. CoWare N2C (http://www.coware.com) is a

good complement to VCC for steps 4 and 5.
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Despite these automation methods and tools,

designers must manually implement the API for

software components (in step 3) as well as

many architecture details (in step 5).

Most component-based design approaches

build SoC architectures from the bottom up,

using predesigned components with standard

interfaces and/or a standard bus. For example,

IBM defined a standard bus called CoreConnect

(http://www.chips.ibm.com/bluelogic/), Sonics

proposed a standard on-chip network called

Silicon Backplane µNetwork,8 and VSIA defined

VCI, a standard component protocol. When

needed, wrappers adapt incompatible buses or

component interfaces. Typically, internally

developed components are tied to in-house

(proprietary) standards, so adopting public stan-

dards implies significant effort to redesign inter-

faces or wrappers for legacy components.

We have developed a higher-level compo-

nent-based design environment for MPSoC plat-

forms that starts with a virtual architecture model

composed of hardware-software components.

This environment automates design step 5 by

automatically generating hardware interfaces

(step 4); and device drivers, operating systems,

and APIs (step 3). Although this approach does

not provide much help toward automating

design steps 1 and 2, it reduces design time con-

siderably for steps 3, 4, and 5, and facilitates

component reuse. The key improvements over

other state-of-the-art platform and component-

design approaches include the following:

� Strong support for software design and inte-

gration. The generated API completely

abstracts the hardware platform and oper-

ating-system services. Software development

can be concurrent with and independent of

platform customization.
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Figure 2. System-level design flow for SoCs.



� Higher-level abstractions. The virtual archi-

tecture model lets designers handle hard-

ware-software interfaces at a high abstraction

level. The system specification separates

behavior and communication, permitting

their independent refinement.

� Flexible hardware-software communication.

Generating automatic hardware-software

interfaces depends on the composition of

library elements. User-extendable libraries

permit the use of various IP interconnect

components.

Component-based design 
for MPSoC

Our design flow starts with a virtual architec-

ture model that corresponds to the golden archi-

tecture in Figure 2. This flow allows automatic

generation of communication coprocessors and

controllers (wrappers), device drivers, operating

systems, and APIs. The goal is a synthesizable

RTL model of the MPSoC platform that comprises

processor cores, IP cores, the communication

interconnect IP, and hardware-software wrap-

pers. Hardware and software wrapper generation

depends on the abstract interfaces of virtual com-

ponents, as the arrows in Figure 3 indicate.

Software written for the virtual-architecture spec-

ification runs without modification on the imple-

mentation because the custom operating system

provides the same APIs.

Virtual architecture
The virtual architecture represents a system

as an abstract netlist of virtual components (see

Figure 3a). Virtual components use wrappers to

adapt accesses from the internal component (a

set of software tasks or a hardware function) to

Platform-Based Design of SoCs
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the external channels. The virtual architecture

models the wrapper as a set of virtual ports con-

taining internal and external ports. These ports

can differ in terms of the communication pro-

tocol, the abstraction level, or the specification

language. This model is not directly synthesiz-

able or executable, because the virtual archi-

tecture does not describe a wrapper’s behavior.

The main goal of our methodology is to enable

automatic generation of these wrappers and

produce a detailed architecture that can be

both synthesized and simulated.

The virtual architecture has service access

ports (SAPs) for services implemented as hard-

ware or software wrapper components. For exam-

ple, you can use the timer SAP to request an

interrupt from a hardware timer after a delay. Our

design flow specifies the virtual architecture using

the SystemC C++ library (http://www.systemc.

org) extended with the following classes:

� A virtual module consists of a module and its

wrapper (the set of virtual ports for a given

virtual module).

� A virtual port groups together internal and exter-

nal ports that have a conversion relationship.

� A virtual channel groups together several

channels having a logical relationship (for

example, multiple channels belonging to

the same communication protocol).

� Parameters customize hardware interfaces

(for example, to define buffer sizes and

physical addresses of ports), operating sys-

tems, and drivers.

Target MPSoC architecture model
Our methodology harnesses a generic MPSoC

architecture, using wrappers to connect proces-

sors and other IP cores to an IP component for

the global communication interconnect, as

Figure 3b shows. In fact, wrappers, acting as com-

munication coprocessors or bridges, separate

processors from the physical communication IP.

This separation frees the processors from com-

munication management and enables parallel

execution of computation tasks and communi-

cation protocols. An operating system, acting as

a software wrapper, isolates software tasks from

hardware. Our goal was to define a generic

model that would let designers customize both

computation and communication to fit an appli-

cation’s specific needs. For computations,

designers can change the number and type of

components; for communication, they can select

specific communication IP and protocols. This

architecture model is thus suitable for a wide

domain of applications.9

A wrapper’s implementation contains both

hardware and software parts. On the software

side, wrappers provide the implementation of

high-level communication primitives (APIs) in

the software module, as well as drivers to control

the hardware. If required, the software wrapper

can also provide sophisticated operating-system

services such as task scheduling and interrupt

management (see Figure 4a). The hardware part

includes a processor/IP adapter, channel

adapters, and an internal bus, as Figure 4b shows.

The number of channel adapters depends on the
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number of channels connected to the corre-

sponding virtual module.

Design tools
Figure 5 gives an overall view of our design

environment. Designers can either import the

input model from specification analysis tools or

manually code it using our extended SystemC

library. All design tools use a unified design

model containing an abstract hardware-software

netlist annotated with parameters.10 Hardware

wrapper generation transforms the input model

into a synthesizable architecture.9 The software

wrapper generator produces a custom operating

system for each processor on the target plat-

form.2 For validation, the cosimulation wrapper

generator produces simulation models.11

Hardware wrapper generator. This design tool

assembles library components using the archi-

tecture template in Figure 3b to produce the

RTL architecture. This library contains general-

ized descriptions of hardware components in

a macrolanguage (like GNU’s m4). The library

has two parts: The processor library contains

local template architectures for processors with

four types of elements: processor cores, local

buses, local IP components (such as local

memory, address decoders, and coprocessors),

and processor adapters. The protocol library

includes a list of channel adapters, each hav-

ing simulation, estimation, and synthesis mod-

els. The models in the processor and protocol

library are specialized during instantiation

according to the parameters annotated in the

virtual architecture model (for example, with

channel parameters such as direction, storage

size, and data type).

Software wrapper generator. This tool pro-

duces optimized and preconfigured operating

systems for the software tasks that run on each

target processor. It uses a library organized into

APIs, communication/system services, and

Platform-Based Design of SoCs
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device drivers. Each of these three parts has ele-

ments that the generated operating system will

use in a given software layer. The generated

operating system provides services, including

those for

� communication—for instance, FIFO com-

munication;

� I/O—such as Advanced Microcontroller Bus

Architecture (AMBA) bus drivers; and

� memory—for example, shared memory

spaces.

The software wrapper generator uses a depen-

dency graph where services and library ele-

ments are represented as nodes. Arcs on this

graph connect services that are interdepen-

dent; for example, communication services

depend on I/O services. Services also depend

on elements of the operating-system library

used to implement the service. Resolving this

graph for the minimal set of necessary library

elements minimizes the size of the generated

operating system. The generated operating sys-

tem does not include elements that provide

unnecessary services.

There are two types of service codes:

reusable (or existing) and expandable. As an

example, the operating-system library can con-

tain reusable C code for an AMBA bus-master

service. In the case of expandable code, the

library might contain operating-system kernel

functions in the form of (m4-like) macrocode.

Several preemptive schedulers—for example,

round robin or priority based—are available in

the operating-system library. Round-robin

schedulers support time slicing, the assignment

of different CPU loads to tasks. To make the

operating-system kernel small and flexible, you

can select the task scheduler from the applica-

tion code’s requirements.

Cosimulation wrapper generator. This tool

produces an executable model containing a

SystemC simulator that acts as a master for

other simulators. Various simulators—SystemC,

VHDL, Verilog, and Instruction Set Simulator

(ISS)—can participate in cosimulation.

Cosimulation wrappers have the same structure

as hardware wrappers (see Figure 4b) but sub-

stitute simulation adapters for processor

adapters, and simulation models for channel

adapters. 

The cosimulation wrapper library has simu-

lation adapters to support various simulators,

and channel adapters with simulation models

for all supported protocols.

In terms of functionality, the cosimulation

wrapper transforms channel accesses via inter-

nal ports to channel accesses via external ports,

using the following functional chain:

1. channel interface,

2. channel resolution,

3. data conversion, and

4. module communication behavior.

Internal ports use channel functions (for

instance, FIFO_available or FIFO_write) to

exchange data. The channel interface imple-

ments these channel functions. Channel reso-

lution establishes the correspondence between

N internal ports and M external ports. Data con-

version is necessary because different abstrac-

tion levels can use different data types to

represent the same data. Module communica-

tion behavior allows data exchange through

external ports—that is, via port functions.

Component-based design of a
VDSL application

As a case study, we redesigned part of a very-

high-bit-rate digital subscriber line (VDSL)

modem.12 We replaced a microcontroller with

two ARM7s and used part of the VDSL protocol

processor, TX_Framer, as an IP core. The virtual

architecture specification has all the information

necessary to produce an RTL implementation.

The model for this case study uses only point-to-

point communication, as Figure 6 (next page)

shows. Virtual modules 1 and 2 represent the

ARM7 processors, and virtual module 3 repre-

sents the TX_Framer IP (only the interface is

known, so Figure 6 represents virtual module 3

as an empty box). The callout shows some of the

parameters for a multipoint, guarded, shared-

memory channel:

� the memory buffer’s address and size (32

positions, in this case),

59November–December 2002



� the operating system’s virtual interrupt num-

ber, and

� the data type (long integer).

Following a suggestion by the VDSL

modem’s design team, we partitioned proces-

sors and tasks. Processors exchange data

using three asynchronous FIFO buffers. Tasks

use various control and data transmission pro-

tocols to communicate. For example, a task

can block or unblock the execution of other

tasks by sending them an operating-system

signal. 

For data transmission, tasks use a FIFO

memory buffer, two shared memories (with or

without semaphores), and direct register

access. Despite simplifications, this design

remains quite complex: It uses two processors

executing parallel tasks and fully distributed

control. The three modules can act as masters

when interacting with their environment.

Additionally, some multipoint communication

channels require sophisticated operating-sys-

tem services.

Results
It took about four person-months to produce

a synthesizable RTL architecture using our

design environment (not counting the effort to

develop library elements and debug design

tools). The effort to manually code, integrate,

and debug custom operating systems, APIs, and

communication coprocessors for this design

was estimated to be about five person-years. For

this case study, we estimate a 15-fold reduction

in design effort. Running all wrapper generation

tools takes only a few minutes on a Linux PC;

writing and debugging the virtual architecture

model consumes most of the time.1

Software developers can compile and link

application code and the generated operating

system for execution on an ARM7 processor or

ISS. Hardware designers can synthesize the

hardware wrapper using RTL synthesis. A small

part of the generated operating systems is in

assembly; this portion includes some low-level

routines, such as for context switch and proces-

sor boot. The results in Table 1 compare well

with those of commercial embedded operating

Platform-Based Design of SoCs
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systems. The minimum size for such operating

systems is around 4 Kbytes, but this size pre-

cludes many of these systems from providing

the required functionality. Table 2 shows results

after RTL synthesis of the hardware wrappers

for implementation in a 0.35-micron CMOS

technology. These results are encouraging; they

show that wrappers account for less than 5% of

the ARM7s’ core surface, and they have a criti-

cal path that corresponds to less than 15% of

the clock cycle for the 25-MHz ARM7 proces-

sors used in this case study.

Evaluation
Results show that our approach can gener-

ate hardware-software interfaces and operating

systems as efficient as manually coded/config-

ured ones. We can easily displace the hardware-

software frontier in wrapper implementation by

changing some library components. This choice

is transparent to the user because our environ-

ment automatically generates everything that

implements the interconnect API: The API

doesn’t change; only its implementation does.

Furthermore, we can verify correctness and

coherence inside tools and libraries against the

API semantics. We can do so without imposing

fixed boundaries to the hardware-software fron-

tier (in contrast to using standardized compo-

nent interfaces or buses).

Use of layered library components provides

considerable flexibility. The design environment

can easily adapt to accommodate different

� languages to describe system behavior,

� task-scheduling and resource management

policies,

� global-communication interconnect topolo-

gies and protocols, 

� processor cores and IP cores, and

� memory architectures.

In most cases, inserting a new design element

in this environment requires only adding the

appropriate library components. Layered

library components are at the root of our

methodology: The principle is to contain a

unique functionality and respect well-defined

interfaces that enable easy composition. This

layered structure prevents library size explo-

sion, using the composition of library compo-

nents to implement complex functionality and

increase component reuse.

THE HIGH-LEVEL, COMPONENT-BASED DESIGN

methodology lets MPSoC designers handle

hardware-software interfaces at a high abstrac-

tion level. Our design environment, called

Roses, integrates tools for hardware, software,

and cosimulation wrapper generation. High-
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Table 1. Results for operating-system generation.

Implementation 

characteristic Result

Virtual module 1

No. of lines in C 968

No. of lines in assembly 281

Code size (bytes) 3,829

Data size (bytes) 500

Virtual module 2

No. of lines in C 1,872

No. of lines in assembly 281

Code size (bytes) 6,684

Data size (bytes) 1,020

No. of cycles for context switch 36

Interrupt latency (cycles) 59 (operating system) + 28 (ARM7)

System call latency (cycles) 50

Resumption of task execution (cycles) 26

Table 2. Results for hardware wrapper generation.

Implementation 

characteristic Result

Virtual module 1

Critical path delay (ns) 5.95

Maximum frequency (MHz) 168

No. of gates 3,284

Virtual module 2

Critical path delay (ns) 6.16

Maximum frequency (MHz) 162

No. of gates 3,795

Read operation latency (cycles) 6

Write operation latency (cycles) 2

RTL VHDL code

No. of lines 2,168



level modeling and automatic generation of

efficient hardware-software interfaces are our

main contribution to increase the efficacy of

MPSoC design cycles. Nevertheless, the MPSoC

design scenario discussed in the introduction

raises many challenges and motivates many

new research areas. We are exploring debug-

ging strategies with Roses for hardware-software

interfaces—for example, automatic generation

of transactional test benches. We are also inves-

tigating use of operating-system generation to

support execution of transactional test bench-

es in the implementation. Finally, we are

exploring MPSoC emulation strategies using an

ARM multiprocessor platform. �
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