
1

 Introduction to Cache’s

This week’s Focus is on Fundamentals

David Andrews
Computer Engineering Group
University of Paderborn

dandrews@ittc.ku.edu

2

Agenda

 The Domain of Cache’s
 Fundamental Level in Memory Hierarchy
 Prevent Slowdowns of CPU

 Instruction Fetching
 Data Fetching

 Why The Work
 Locality of Reference

 Temporal
 Spatial

 Baseline Cache Operation
 Address Comparisons and Data Blocks (Lines)
 Address Comparisons based on Tags

 Common Organizations
 Direct Mapped

 Simple but slowest

 Fully Associative
 Most Complex and Fastest

 Set Associative
 Close to Fully Associative Performance + Simplicity of Direct

3

Agenda (Continued)

 Cache Control
 Update Policies

 Write Back, Write Through

 Replacement Policies
 Selecting Which “Block” to Replace

4

The Domain of Caches

 Why Were Caches Created ?
 Performance, Performance, Performance……Any Questions ?

 Consider This….
 We want RISC Scalar CPU to Input 1 Instruction per Clock

 CPU Fetches Each Instruction From DRAM (Cheap but Dense Memory)

 but has to wait 40/.4 = 100 Clocks between Accesses Due to Cycle Time

– DRAM Slow
– Bus Slow (Cycle Times + Arbitration not Even Considered Here)
– CPU Pin Limited (Prevents Simultaneous Instruction Fetch)

5

Achieving A Memory Hierarchy

 Objective: Make System that:
 1: Provides Bulk and Cost Close to Disk

 2: Provides Performance of Registers/CPU

6

Review: Who Cares About the Memory Hierarchy?
(Slide from David Patterson)

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

“Moore’s Law”

 Processor Only Thus Far in Course:
 CPU cost/performance, ISA, Pipelined Execution

 CPU-DRAM Gap

 1980: no cache in µproc; 1995 2-level cache on chip
(1989 first Intel µproc with a cache on chip)

7

Processor-Memory Performance Gap “Tax”
(Slide from David Patterson)

 Processor % Area %Transistors

(_cost) (_power)

 Alpha 21164 37% 77%

 StrongArm SA110 61% 94%

 Pentium Pro 64% 88%
 2 dies per package: Proc/I$/D$ + L2$

 Caches have no inherent value,
only try to close performance gap

8

Why Caches Work

 Principle of Locality:
 Temporal: If you use an instruction/data item in the near past, then you will

probably use it again in the near future.
 Loops
 Variable re-use

 Spatial: If you use an instruction/data item, then you will probably use others
close in address space

 Sequential Instruction Execution
 Data Arrays

 Basic Operation:
 CPU Issues Address
 Cache Compares To Existing Addresses (Tag Compare)

 If hit, continue
 If miss, stop execution and pull in complete line

– Cache refill times can be considerable. Worsens with multi-level caches.
We won’t consider refill times in our basic coverage today

9

Big Picture Operation

 Cache is Based on SRAM (D-Flip Flops).
 Much Faster than DRAM

 Cache Memory is Limited
 Obviously, Map Multiple Locations From Main Memory into Cache

 Question: How Do We Decide The Mapping ?
 Direct Mapped

 Fully Associative

 Set Associative

 Lets First Look At Cache Organization

10

Direct Mapped Cache Organization

 Break Address Into 3 Parts
 Block Offset

 Index

 Tag:

11

Sizing Analysis

 Direct Mapped Cache Sizing
 Given by Index x Block Size (in Bytes)

 Total Size = 2#index_bits x 2 #block_offset_bits

 This Example = 23 x 22 = 25 = 32 bytes

 Note* Independent of Tag Size

– Does Cache Size Change for this Example for 32 bit Address ?
 How Many Blocks Mapped into Common Line ?

– Does this change for 32 bit Address ?

12

Fully Associative Cache

 Tag Can Go Anywhere: Better Utilization

13

Set Associative

 2-Way Set Associative
 “Way-ness” :

 = # Storage Locations

 = # Comparisons

14

2-Way Set Associative Cache (Better Representation)

 Sets Formation as Grouped Blocks

 N sets := N:1 Multiplexers

 Wayness = # Multiplexers

 Wayness = # Comparitors

15

4-Way Set Associative

 4-Way Uses 4 Comparitors

 2 Sets (In this Example)

 4 Places to put a Block

16

A Little Comparison Between Organizations

 Direct, Full, and Set Associative are all really the same

1

M

1

#

Muxes

N:1

N/M:1

N:1

Size of

Muxes

N1NFull Ass.

MN/MMSet Ass.

M way

1N1Direct

Comments#

Comp

#setsWay-

ness

Associativity

N Lines

17

Measuring Performance

How We Measure Cache Performance:

 Hit rate: Percentage of Accesses Issued by CPU Found in Cache

 H usually pretty high; say 96 - 99%

 Average Access Time: The Average, or Effective Access Time
Using a Cache

 Tacc = tcache x h + tmm(1-h)

 Performance is Very Sensitive to Miss Rate (1- Hit Rate)
 Consider ratio of 100:1 cycle time difference

18

Performance Effects of Cache

 Assume Cache is 100x Faster Than Main Memory

clock cycles

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

Hit Rate

A
v
e
r
a
g

e
 C

lo
c
k
 C

y
c
le

s

Series1

19

Cache Misses and Size

 Compulsary Misses: Assumes an infinite size cache. Compulary misses occur when a block is first accessed.
Also called “Cold Start” misses

 Capacity Misses: If cache cannot contain all blocks (program/data) needed, then misses occur because
blocks are discarded and then later retrieved.

 Conflict: Misses due to associativity constraints. No Conflict misses for Fully Associative. Some for set
associative and the most for direct mapped.

 Consider Graph for Fully Associative Cache (No Conflict Info in this Graph)

20

Effects of Associativity

 Does Associativity Effect Hit Rate ?
 You bet…..

 Simple Thought Game…
 An Increase in Associativity Enables More Options on Where an

Instruction/Datum Can be Stored in Cache
 Will a Set Associative Cache Ever Perform Worse than A Direct Mapped

Cache ?

 Will a Fully Associative Cache Ever Perform Worse than a Set Associative
Cache ?

 Conflict Misses: Hit Rate Differences Between Levels of Associativity.

21

Cache Size (KB)

M
is

s
Ra

te
 p

er
 T

yp
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way
Capacity

Compulsory

3Cs Absolute Miss Rate (SPEC92)
(Slide from David Patterson)

Conflict

Compulsory vanishingly
small

22

Cache Size (KB)

M
is

s
Ra

te
 p

er
 T

yp
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way
Capacity

Compulsory

2:1 Cache Rule
(Slide from David Patterson)

Conflict

 miss rate 1-way associative cache size X
= miss rate 2-way associative cache size X/2

23

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

1
6

3
2

6
4

1
2

8

2
5

6

1K

4K

16K

64K

256K

1. Reduce Misses via Larger Block Size
Slide from David Patterson

24

Block Replacement

 When a miss occurs and all blocks (direct, set, full ?) are
occupied, which one do you replace ?
 Thought Experiment: What would ideal replacement policy be ?

 Requires us to predict future

 Realistic Policies
 Random: Simply pick one

 Least Recently Used (LRU): Relies on the past to predict the future.
Don’t replace a block that has recently been used, replace block that
has not been used for the longest time.

 First In, First Out (FIFO): Simpler version of LRU.

 LRU is probably the most common. Best approximation we have to
ideal. Check out data sheets for your Pentiums….

25

What Happens on a Write ?

 Write Back: Only Update the Cache, not Main Memory
 Pro’s

 Best Performer: All Accesses Occur At Cache Cycle Times

 Minimizes Updates to a Single Variable (summation etc.)

 Con’s
 Modest Increase in Complexity (A Dirty Bit)

 Must First “Flush” Back Dirty Line Before Replacement

 Inconsisent Memory State (Multiple Values in Cache and Main Memory Possible)

 Write Through: Update Through Cache and Into Main Memory
 Pro’s

 Keeps Cache and Main Memory Consistent

– Important for Multiprocessors ?
 Line Refills Simple and Fast, No Need to Flush Stale Data

 Con’s

 Writes Occur at Main Memory Speed, not Cache
 How Often Do We Write ?

