
Assembly LanguageAssembly Language

Introduction to Basic Control
Structures Written in Assembly

By Jason Agron

Program Control Structures?Program Control Structures?

• Things like…
• Conditional Statements.

• IF Statements.
• CASE Statements.

• LOOP Statements:
• DO-WHILE.
• WHILE.
• FOR.

Conditional StatementsConditional Statements

• Used to “test” a condition.
• Check if it is TRUE or FALSE.

• Implemented using…
• A comparison.
• A branch (or many branches).
• A body of code to execute if TRUE.
• A body of code to execute if FALSE.

Example IntroductionExample Introduction

• Example:
if (x == 0) then

<bodyTrue>
else

<bodyFalse>
end if

• Notes:
• “then”

• If true, fall through.
• If false, jump to

<bodyFalse>.
• <bodyTrue>

• Last statement must be
followed by a jump to
“end if”.

IF Statement ExampleIF Statement Example

• Pseudo-code:
if (x == 0) then

<bodyTrue>
else

<bodyFalse>
end if
<restOfProgram>

NOTE: Assume x is
stored in r8.

• MB Assembly:
Check Condition…

Either fall through to bodyTrue
Or, branch to bodyFalse
bneqi r8, 0, bodyFalse
nop

bodyTrue:
<bodyTrue>
Jump to endIf
bri endIf
nop

bodyFalse:
<bodyFalse>

endIf:
<restOfProgram>

CASE StatementsCASE Statements

• Just like if statements, but…
• Extra comparisons need to be made.

• i.e. ELSE-IFs.
• Try to write assembly for the following:

case(x):
when “0”: <body0>
when “1”: <body1>
default: <bodyD>

end case

LOOP StatementsLOOP Statements

• Just like IF statements, but…
• They have a “backward” branch.

• Implemented using…
• A condition:

• Do I continue and enter the loop or do I exit the
loop.

• The loop body.
• The backwards branch.

• To repeat, and re-check the loop condition.

Example IntroductionExample Introduction

• Example:
x = 0
while (x < 99) {

x = x + 2
<loopBody>

}

• Notes:
• Comparison could

either fall through into
loop OR jump to end
of loop.

• Last statement in
<loopBody> should
jump back to
comparison.

WHILE Loop ExampleWHILE Loop Example

• Pseudo-code:
x = 0
while (x < 99) {

x = x + 2
<loopBody>

}
<restOfProgram>

NOTE: Assume x is
stored in r8.

• MB Assembly:
Init x to 0
addi r8 r0 0

loopCond:
Check condition
bgti r8, 99, endLoop

loopBody:
addi r8, r8, 2
<loopBody>
bri loopCond
nop

endLoop:
<restOfProgram>

MB AssemblyMB Assembly

• MicroBlaze ISA Documentation:
• http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf

• Additional assembly examples:
• Can be found on the web.

• OR
• Can be developed by working with your TA.

Why Learn Assembly?Why Learn Assembly?

• To learn an ISA is to understand the
relationship between high-level languages
and the machines that “execute” them.

• Also, some CPUs do not have compilers for
them, therefore knowing the ISA would
allow one to…
• Program the CPU.
• Write a compiler for the CPU.
• Etc.

Goal of This LabGoal of This Lab

• Re-implement your GPIO-based FSM in
assembly.
• Make sure to document your programs!!!!

• It is allowed to have a “simpler” behavior,
but it must…
• Have at least 4 distinct “states”.
• One of the states must be “dynamic”.

• LEDs must flash in some sort of alternating pattern.

QuestionsQuestions

1) What does ISA stand for?
2) What are R0 and R1 used for in the MB?
3) How many bits are used for the opcode in all MB

instructions?
4) Write individual programs using the MB’s ISA

that…
a) Adds R4 and R5 and stores the result in R9.
b) Stores the lower byte in R3 at memory location

0xDEADBEEF.
c) Zero out all of the bits of R10 except the lower byte

and store the result in R10.

