
EECS 388: Computer Systems and Assembly Language
Homework 5 Solution

1. (20) How many RTI interrupt events must occur to generate a 15
 minute delay assuming the MCLK is operating at 2MHz and the
 RTR[2:0] bits are set for “110”? How do you set up the Real_Time
 Interrupt Control Register (RTICTL) (i.e., enable RTI and set RTI
 pre-scale) for this purpose?

According to the table on page 229 of your textbook, the period of a RTI interrupt
is set by the MCLK frequency divided by a divisor stored in RTR[2:0]. Therefore:

• RTR[2:0] = “110” implies a clock divider of 218.
• MCLK = 2 MHz and a divider of 218 implies that the frequency of RTI

interrupts is 7.63 Hz (2 MHz / 218).
• The time delay, or period, between RTI events is thus 1/7.63 Hz = 0.13

seconds (because period = 1 / frequency).

Now, if we want a delay of 15 minutes:

• 15 minutes = 900 seconds.
• Number of RTI events for 15 minutes =

o (900 seconds)/(0.13 seconds per delay) = 6,293.08.
o Thus, it will require about 6,294 RTI events

One must write the appropriate values into the RTICTL in order to enable
interrupts and to set the RTI frequency. The RTICTL register is a memory-
mapped location located at address $0014. The RTIE bit is the MSB (bit 7), while
the RTR[2:0] bits are the least-significant 3 bits (bits 2 through 0).

RTICTL EQU $0014 ; Equate for the address of the RTICTL register

LDAA %10000110 ; RTICTL mask (RTIE =’1’, RTR[2:0] = “110”)
STAA RTICTL ; Store the value into RTICTL

2. (15) Textbook, page 291. Advanced problem #4. Change MCLK to 4
 MHz.

Assuming MCLK is at 4 MHz (as stated above), and the pre-scaler is set to 1,
this means that the timing frequency is (4 MHz)/(21) = 2 MHz, or a period of
500 ns.

If the two counts (or timestamps) are $1993 and $0C78, then the period of the
measured signal (assuming no counter rollovers) is $D1B, which is 3,355
counter ticks in decimal. This period, in real-time, is thus:

3,355 ticks * (500 ns / 1 tick) = 1677500 ns 1.6775 ms.

3. (15) Textbook, page 291. Advanced problem #5.

If the period of the pulse being measured is greater than the rollover time fo
the counter, then one must make sure to detect counter rollovers in order to
accurately measure the signal of interest. Think of this process as noting
every New Years Eve from when you were born until the present time in
order to figure out how old you are. This requires one to modify the program
to log every counter rollover (pulse-accumulator overflow bit, or PAOVF).

Given the numbers from above (problem #2), we know that counter is
adjusted by 1 every 500 ns, and that the counter will rollover when it reaches
216, or 65,536. This means that pulse length of interest can be found by
counting counter rollovers:

Period= # rollovers + # of extra ticks
= (500 ns / 1 tick) *[(# of rollovers)*(65,536 ticks/ 1 rollover)+ (current ticks)]

4. (25) Write a program to measure the period of a periodic signal
 connected to input channel 3 by measuring the count difference
 between two falling edges. Set PR2:PR0 = 011. Use polling method.

This program is very much like the example program found on pg. 273 of the
textbook.

; **
; Program Definitions
; **
REG_BASE EQU $0000 ; Base address for calculating offsets to other registers
TMSK1 EQU $8C ; Offset for TMSK1 register
TMSK2 EQU $8D ; Offset for TMSK2 register
TCTL4 EQU $8B ; Offset for TCTL4 register
TIOS EQU $80 ; Offset for TIOS register
TC3H EQU $96 ; Offset for TC3H register
TSCR EQU $86 ; Offset for TSCR register
TFLG1 EQU $8E ; Offset for TFLG1 register
TCNT EQU $96 ; Offset for TCNT register
TMSK2_IN EQU $03 ; Set the pre-scale bits
TCTL4_IN EQU $C0 ; Configure falling edges
TIOS_IN EQU $00 ; Select channel 3 for input compare
TSCR_IN EQU $80 ; Enable timer
CLR_CH3 EQU $08 ; Mask to clear channel 3 flag

; Data section
ORG $6000

edge1 FDB $0000 ; Reserve a word (16-bits) for edge measurement
period FDB $0000 ; Reserve a word (16-bits) for period measurement

; Code section
ORG $4000

LDS #$8000 ; Initialize the stack pointer
JSR TIMERINIT ; Initialize the timer
JSR MEASURE ; Measure the period

DONE BRA DONE ; Infinitely loop to halt program

; **
; Function used to enable timer subsystem
; **
TIMERINIT

CLR TMSK1 ; disable interrupts
LDX #REG_BASE ; Load X with base address of registers

LDAA #TMSK2_IN ; Set pre-scale
STAA TMSSK2, X

LDAA #TCTL4_IN ; Configure for falling edges
STAA TCTL4, X

LDAA #TIOS_IN ; Select channel 3
STAA TIOS_IN, X

LDAA #TSCR_IN ; Enable timer
STAA TSCR_IN, X

RTS ; return

; **
; Function used to measure signal period
; via polling method
; **
MEASURE

LDAA #CLR_CH3 ; Clear channel 3 flag to prepare measurements
STAA TFLG1,X
; Grab measurement of first edge

WAIT1
BRCLR TFLG1,X,$08,WTFLG ; Wait for an edge
LDD TCNT,X ; Load in counter value
STD edge1 ; Save the measurement

LDAA #CLR_CH3 ; Clear channel 3 flag again
STAA TFLG1,X
; Grab measurement of second edge

WAIT2
BRCLR TFLG1,X,$08,WTFLG ; Wait for an edge
LDD TCNT,X ; Load in counter value
SUBD edge1 ; Calculate the difference between edges
STD period ; Store the period result

RTS ; return

5. (25) Generate a 1500Hz square wave with a 40% duty cycle
 (ON/PERIOD) on output compare channel 2 (OC2). MCLK = 8MHz.
 Set the pre-scaler to divide by 4. Use interrupt.

This program is very much like the example program found on pg. 275 of the
textbook. If the MCLK runs at 8 MHz and the pre-scaler is set to 4, then the
counter will adjust at a rate of (8 MHz)/4 = 2 Mhz, or with a period of 500 ns.

A 1500 Hz signal has a period of 666.67 microseconds, and a 40% duty cycle
means that it will be high for 0.4*666.67 microseconds or 266.67 microseconds,
and low for 400 microseconds. This translates to counter value of:

High counter:
= 266.67 microseconds * (1 tick / 0.5 microseconds)
= 534 ticks $0216

Low counter:
= 400 microseconds * (1 tick / 0.5 microseconds)
= 800 ticks $0320

The program on p. 275 can be modified to perform the 40% duty cycle switch
by changing the following:

• TMSK2_IN needs to be changed to $04
o This sets the correct pre-scale for our problem.
o Pre-scale of 4 (22 = 4).

• The first instance of #$03E8 (in TIMERINIT) needs to be changed to the
counter value for our high counter, or #$0216.

• The instance of #$03E8 (in SQWAVE) needs to be changed to alternate
between the high and low-counter values using a conditional branch to
implement an IF statement.

o This can be easily done by reserving a word (double-byte) in
memory to contain the count value. This value will “flip-flop”
between the high and low counter value during every iteration of
the loop (see the following modifications.

;************************
; New data section
;************************
ORG $6000
COUNT_INC FDB $0000 ; Location to hold counter increment

.

.

.
<Within TIMERINIT>

; Initialize COUNT_INC to be low counter value
LDD $0320
STD COUNT_INC

<Replace SQWAVE with the following>
SQWAVE

BRCLR TFLG1,$04,SQWAVE ; Poll for counter flag
LDD TC2H ; Load in counter value

LDX COUNT_INC ; Load in current COUNT_INC
CPX #$0216 ; Compare to high-count
BEQ ADD_LOW ; If high add low

ADDD #$0216 ; Otherwise, add high
LDX #$0216 ; Update COUNT_INC
STX COUNT_INC

BRA ENDIF
ADD_LOW

ADDD #$0320 ; Add low
LDX #$0320 ; Update COUNT_INC
STX COUNT_INC

ENDIF
STD TC2H ; Setup next transition time
JSR CLEARFLAG ; generate repetitive signal
RTS ; return

