
1

Extracting Parallelism for
MPSoC’s

David Andrews
Computer Engineering Group

University of Paderborn

dandrews@ittc.ku.edu

2

Heterogeneity

3

System Architecture

 Most Common Organization of Multiprocessors:
 GP CPU: Controller

 Special Purpose Processors: Slaves

 Overall Application Partitioning Part of Larger Picture
 Assume MPSoC Is One Application Program

 Application Broken into Threads and Tasks

 RTOS For Providing Services Inter-Processor

 We’ll Talk About This Level of Abstraction Later

 Assume A Task Per Processor

4

Parallelism and Speedups

 Extensible Processors Allow Exploitation of Parallelism

 Where Does Parallelism Come From ?
 Remember Amdahls Law

5

Parallelism Granularity

 Hockney & Jessope
Job Level

Between jobs
Between phases of jobs

Program Level
-Between parts of program
-Within loops

Instruction Level
-Between phases of
instruction execution
-VLIW

Arithmetic/Bit level
-Between elements of a
-Vector operation
-Within ALU circuits

 Gottlieb

Procedures and functions

I/O

Overlap Disk, DMA

Loops

Unrolling

Conditional Statements

Both Sides

Basic Blocks

Parallel Blocks

Circuit Levels

Arithmetic/Bit Level

6

Tensilica Extensible Core Provides:

 Fusion
 Identifies Instructions that can be combined

Add R1,R2,R3

Sll R1, R1, ##4

Create: Add_sll R1, R2, R3, #4 /* 1 clock cycle instruction

 Vector/SIMD
 Best Bet for Parallelization Using this Method

 Attacks Loops: Unroll and Create New Wider Register File + ALU’s of
Depth 2, 4, 8

 VLIW: Called “Flix” (Flexible Length Instruction Xtensions)
 32 or 64 bit VLIW Instruction:

 Can be multicycle

7

Big Win Areas

 Amdahls Law
 Look For Where Program Spends Most Time

 Straight Line Code Not Particularly Ideal

 Look For Loops

 Classic Compiler Optimizations All Come Into Play
 Code Migration

 Loop Fusion

 Loop Unrolling:
 Create Parallel Instantitions of the Loop Body

 Repackage As SIMD/Array Processing Operations

8

(Imperative) Language Level Representations

Two Approaches to Getting Parallelism Out of a Single Thread

1) Automatic Extraction
 - Compiler. Easy for programmer, but doesn't work well

 -parallelism is generally within loops
– o superscalar’s do this automatically
– o out of order execution, completion taps instruction level parallelism
– o Studies show approximately 2-3 instructions can be executed in parallel

 2) User Directed
 -Parallel extensions to imperative languages

 - low level (parbegin/parend)
 - SIMD/Systolic approaches

Tensilica Starts With Automatic Extraction, and Allows Users to Craft
New Instructions for Extensions

9

Tensilica Automatic Processor Generation

10

Automatic Instruction Set Extensions
(Next Set from P. Ienne’s Slides)

11

Creation of Co-Processor Instruction

12

Tool Focus

13

Data Flow Analysis

 Represent Program As Data Flow Graph

14

Keeping Data Local

15

Fast Transfer Between Memory/AFU

16

Balancing I/O

17

Loop Optimizations

 DEFACTO
 Design Environment for Adaptive Computing Technology

 Automated Approach For Co-Processors in FPGA’s

18

Loop Optimizations

 Data Reuse Analysis and Transforms
 Reuse Analysis: Tells us How Data Is Reused Between Loop Iterations

 Input Dependencies: Re-use Data Input from Memory
 True Dependencies: Re-use a Computed Value
 Output Dependencies: Update Same Memory Location Several Times

 Reuse Transforms
 Scalar Replacement: Creates On Chip Register for Temp Storage
 Tapped Delay Lines: Shift Register Structures for Regular Accesses

 Loop Unrolling
 Expose Parallelism Within Loop Body

 Tiling
 Within Nested Loops, Can Create Spatial “Blocks” That Can Be Unrolled

19

Create Local Registers

20

Loop Unrolling

 Inner Loop Body “Expanded”

21

Tiling

 Can Be Used to Create Coarse Grained Processing Tiles

22

GARP

 Re-Programmable Application Specific Functional Unit (ASFU)
 Allows “different” Custom Instructions

 Uses Reconfigurable Array

 Exploits Loop Bodies For Highest Return

23

GARP

 Based on Single Issue MIPS Core
 Reconfigurable Array For Exploiting Loop Level Parallelism

 Few Cycles From Registers to Array

 Direct Connection To Memory (Most Loops Operate on Memory Structures)

 Array Rapidly Reconfigurable By Having Multiple Planes

 Based on Unaltered C Code For Compatibility

24

Compiler Flow

 Identify loops and map into hardware
 Accelerate From Custom Loop Bodies

 Cannot “unroll” loops due to size

25

Identifying Hyperblocks

 Technique from VLIW Architectures for Multiple Paths

26

Predicating Conditionals within Hyberblock

27

Loop Duplication for Hardware

 Creating Hardware Copies of a Block + Software Copy

28

Reference Counts

29

Eliminating Operations From Hyberblocks

30

Reasons for Elimination

 Hardware Infeasible Loops
 Subroutine Calls

 Stack Operations and Control Flow

 Floating Point Arithmetic
 FP Circuits Bigger Than Garp

 Operations On 64 bit Data Values
 Again too large

 Generalized Division or Remainders (Powers of 2 can shift)
 Again too large

 Compiler Built in Functions
 Can’t form circuits

 Inner Loops
 Treated As A Main Loop And Start Over

31

Simulated Speedups

 Published In 1997 Paper

32

Candidate Loops

33

Final Performance Comparisons
Callahan’s Thesis

34

Effect of Cache Depth Under Array

35

Assuming Effectively Infinite Cache

36

Breakdown of Execution Time in Kernel

37

For Loops that Could Not Be Accelerated

38

Instruction Level Parallelism Summary

 Automatic Parallelization Has Been Pursued Over 30 Years

 ISE Generation Getting Better: Can Create Better Hardware
Support

 Performance Results Still Mixed

 Next, Look At Raising Level of Abstraction For to
Programming Model
 How to Partition Tasks/Threads

 Operating System Support

 Automatic Generation Of Hw/Sw Interfaces

