Strategic Directions in Real-Time and Embedded Systems

JOHN A. STANKOVIC ET AL."

Department of Computer Science, University of Virginia, Charlottesville, VA 22903

(stankovic@cs.virginia.edu)

1. INTRODUCTION

Real-time computing is an enabling tech-
nology for many important application ar-
eas, including process control, nuclear
power plants, agile manufacturing, intel-
ligent vehicle highway systems, avionics,
air-traffic control, telecommunications
(the information superhighway), multi-
media, real-time simulation, virtual re-
ality, medical applications (e.g., telemedi-
cine and intensive-care monitoring), and
defense applications (e.g., command,
control and communications). In partic-
ular, almost all safety-critical systems
and many embedded computer systems
are real-time systems. Further, real-
time technology is becoming increas-
ingly important and pervasive, e.g.,
more and more infrastructure of the
world depends on it.

Strategic directions for research in
real-time computing involve addressing
new types of real-time systems including
open real-time systems, globally distrib-
uted real-time, and multimedia systems.
For each of these, research is required in
the areas of system evolution, composibil-
ity, software engineering, the science of
performance guarantees, reliability and
formal verification, general system is-
sues, programming languages, and edu-
cation. Economic and safety consider-

1 Contributors to this article include Alan Burns,
Kevin Jeffay, Mike Jones, Gary Koob, Insup Lee,
John Lehoczky, Jane Liu, Al Mok, Krithi Ramam-
ritham, Jim Ready, Lui Sha, and Andre van Til-
borg.

ations, as well as the special problems
that timing constraints cause, must be
taken into account in the solutions.

In Section 2, several examples of real-
time systems, their corresponding im-
portance, and several examples of re-
search success are presented. In Section
3 key future challenges and research
related to strategic directions are high-
lighted. A vision of the field for the next
ten years is presented in Section 4. Sec-
tion 5 summarizes the paper.

2. EXAMPLES OF REAL-TIME SYSTEMS
AND RESEARCH SUCCESSES

A real-time system is one in which the
correctness of the system depends not
only on the logical results, but also on
the time at which the results are pro-
duced. Many real-time systems are em-
bedded systems, i.e., they are compo-
nents of a larger system. If incorrect
operation of a system can lead to loss of
life or other catastrophes, it is called a
safety-critical system—air-traffic con-
trol, for instance. An air-traffic control
system must continuously manage mas-
sive amounts of data. Unlike some large
data-management systems, such as air-
line reservations, air-traffic control data
is constantly changing and has ex-
tremely high value (related to public
safety) for very short amounts of time
(response-time requirements vary from
a few milliseconds for radar data to
several seconds for flight control infor-
mation). At completion, the new U.S.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, requires prior specific permission and/or a fee.

© 1996 ACM 0360-0300/96/1200-0751 $03.50

ACM Computing Surveys, Vol. 28, No. 4, December 1996

752 o J. A. Stankovic et al.
air-traffic control system is estimated to
cost over five billion dollars. However,
the system is so large and complex (the
new system will have between 1 and 2
million lines of code and thousands of
consoles) that new real-time research is
needed to improve safety even further,
lower the cost of the system and its
maintenance, and provide for its contin-
ual evolution as the system grows in
size and complexity. Together with the
need for safety, there is a need for a
more scientific basis for the coherent
treatment of time and time-based func-
tionality, concurrency, and dependabil-
ity.

Real-time and embedded computing
also plays a key role in many industrial
sectors. Consider the automobile indus-
try. Auto manufacturers can remain
competitive only if they incorporate
state-of-the-art real-time computing
systems into their cars. In the future,
distributed real-time control systems
will replace and enhance many of the
conventional control systems of the car,
making cars more efficient and adding
to public safety. Before distributed real-
time control systems can be used, sev-
eral significant research challenges
must be addressed: precise real-time re-
sponse to the microsecond in a distrib-
uted system, fault tolerance under strict
timing requirements, maintainability,
and testability under competitive pric-
ing pressures.

Research in real-time computing has
been very effective. For example, ad-
vances in the science of temporal qual-
ity-of-service (QoS) guarantees have led
to many schedulability conditions and
efficient, robust, and accurate valida-
tion algorithms for real-time applica-
tions such as digital control and con-
stant-bit-rate video and audio. The
validation technology built on these the-
oretical advances [Klein et al. 1993] in
the design and development of real-life
systems has now been used success-
fully. (The software system onboard the
satellites in the NAVSTAR Global Posi-
tioning System (GPS), for example). To-

ACM Computing Surveys, Vol. 28, No. 4, December 1996

gether with specialized hardware, this
system maintains an accurate timing
signal for navigation users, monitors
the integrity of the navigation informa-
tion, estimates the satellite orbital pa-
rameters, and maintains the synchroni-
zation of the GPS constellation. The
timely completion of many tasks in this
system must be guaranteed because
many terrestrial applications are depen-
dent on GPS information and erroneous
GPS information could have serious
consequences.

The real-time software industry is an-
other example of the success of real-time
technology. This industry has closely fol-
lowed the progress of the semiconductor
industry in general and the microproces-
sor industry in particular. Current esti-
mates are that over 2 billion dollars are
spent annually on tools, application soft-
ware, and embedded operating systems.
This market is also growing at approxi-
mately 25% per year. The commercial re-
al-time operating system market, which
started around 1981, is currently over
$100 million per year with a 30-35% an-
nual growth rate. Commercial real-time
operating systems are used in a wide
variety of embedded systems including
avionics, medical, communication, con-
sumer, and instrumentation applications.
Many of these systems are “mission-criti-
cal” and have been certified by govern-
ment agencies, including the U.S. FAA,
and its foreign equivalents. For example,
the McDonnell-Douglas MD-11, the Boe-
ing 757, 767, and 747-400 all fly with
commercial off-the-shelf real-time operat-
ing systems.

Future success is also expected in
many other areas. For example, real-
time commerce on the Internet is trans-
forming business. Since for every PC
there are thousands of embedded com-
puters, a thriving embedded computing
industry can be expected. There will be
small embedded processors in millions
of products, making them more intelli-
gent. The potential for the future use of
real-time technology is unlimited.

Real-Time and Embedded Systems o

3. FUTURE CHALLENGES AND RESEARCH

Real-time systems will undoubtedly be-
come pervasive. They will support an
increasingly broader spectrum of appli-
cations. Many have widely varying time
and resource demands and must deliver
dependable and adaptable services with
guaranteed temporal qualities. More-
over, both technical and economic con-
siderations make it necessary to build
these systems using commodity com-
puter networks and commonly used op-
erating systems and communication
protocols.

While all the challenges and impor-
tant research areas (see Lee and
Krishna [1993]; Son [1995]; Stankovic
[1988]; Stankovic and Ramamritham
[1988]) in real-time computing cannot
be covered here, several key areas are
stressed. First, several high-level chal-
lenges are discussed: system evolution,
open real-time systems, composibility,
and software engineering. Then, key en-
abling basic research is discussed,
including the science of performance
guarantees, reliability and formal veri-
fication, general systems issues, real-
time multimedia, and programming lan-
guages. Finally, the need for education
in real-time computing is presented.
Since many of these topics are strongly
related, some degree of overlap is un-
avoidable and serves to highlight the
strong relationships between these top-
ics.

3.1 System Evolution

Computers have revolutionized the pro-
duction of goods and delivery of ser-
vices. Nevertheless, existing real-time
computing infrastructure often intro-
duces formidable barriers to continuous
process improvement, equipment up-
grades, and agility in responding to
changing markets and increased global
competition. Consider the following an-
ecdotal scenarios from industry.

Process improvement: A research de-
partment developed a process modifica-
tion that significantly improved product

753

yield and quality. With a relatively mi-
nor modification of the processing se-
quence and new set-points for key pro-
cess variables, the improvements were
demonstrated on a pilot plant. Never-
theless, the improvements were never
implemented in the plant because the
line manager persuaded management
that it couldn’t be accomplished cost-
effectively. Although the required soft-
ware modifications are simple logic
modifications, the process sequence is
controlled by a set of networked PLCs
(programmable logic controllers) coordi-
nating several valves, sensors, and PID
loops with several hundred lines of lad-
der logic code. The effects of the modifi-
cations on the timing requirements are
unknown. The technician who wrote the
PLC programs left the company, and
the last time a modification was at-
tempted on the code it took the process
down completely, costing thousands of
dollars in downtime. The line manager
wants no part of installing the so-called
process improvements developed by the
research department.

Equipment upgrades: Over the years,
aging equipment has been replaced with
new production technology so that the
factory now has a hodgepodge of old and
new equipment with controllers from
five different vendors, each with its own
programming interface, data structures,
data communication protocol, and tim-
ing characteristics. One of the older pro-
cess machines failed recently and the
best replacement was from yet another
vendor. It had a considerably shorter
cycle time, improved reliability, and a
more sophisticated control computer. As
with previous upgrades, however, in-
stalling the new equipment required yet
another development and integration ef-
fort with yet another proprietary com-
puting environment. It was particularly
costly to create the custom interfaces to
communicate with the other equipment
in the system and there was no way to
predict the timing effects. Conse-
quently, the only way the equipment
could be installed safely was to perform

ACM Computing Surveys, Vol. 28, No. 4, December 1996

754 . J. A. Stankovic et al.
extensive tests during factory down-
time. In the end, integration cost was
several times the capital cost of the new
equipment, and worse yet, it took sev-
eral times longer to install the equip-
ment than originally estimated.

These problems and others are wide-
spread in the real-time and embedded
systems industry. For example, in re-
sponse to such problems, Chrysler,
Ford, and GM have worked together
and stated their requirements for next-
generation real-time computing systems
in a white paper, “Requirements of
Open, Modular Architecture Controllers
for Applications in the Automotive In-
dustry” (Aug. 15, 1994). In this paper an
important requirement states: “Control-
lers of these systems [auto manufactur-
ing systems] must support changes with
minimal delay and yet maintain perfor-
mance requirements. The controllers
should also allow users to easily add or
upgrade controller functionality without
relying on technology vendors and con-
troller suppliers.”

A paradigm shift is needed for real-
time computing, from a focus on tech-
nologies for completely new installa-
tions to one designed to mitigate the
risk and cost of bringing new technology
into functioning industrial systems. In-
dustry needs a computing infrastruc-
ture in which upgrades are safe and
predictable, with negligible down-time.
Specifically, the important features of
this new real-time software architecture
technology should include the following:

—The extensive use of open-standard-
based components whenever possible,
from backplane buses to operating
systems and networks and communi-
cation protocols.

—A coherent set of interfaces for the
integration of process control, plant-
wide scheduling, and the plant man-
agement information system.

—A convenient and safe environment
for customization, optimization, and
reconfiguration of plant operations;
on-line development, testing, and in-
tegration of promising new technolo-

ACM Computing Surveys, Vol. 28, No. 4, December 1996

gies and products; and trouble-free
replacement of obsolete subsystems.

The prescription of off-the-shelf com-
ponents for building real-time applica-
tions implies two research challenges:

(1) Developing scheduling and resource
management schemes for (sub)sys-
tems with demonstrable predictabil-
ity properties. The predictability
properties must cover functionality,
timeliness, and fault-tolerance.
Given subsystems with known pre-
dictability properties, developing
schemes to compose them into
larger systems such that the pre-
dictability properties are also com-
posible. This is essential to make
real-time system components reus-
able. Composing systems to satisfy
given functionality requirements is
by itself a difficult problem. The
addition of fault-tolerance and time-
liness makes it a qualitatively for-
midable problem, but one with enor-
mous payoffs.

(2)

System evolution is facilitated by
open systems and composibility, which
are presented in the next two sections.

3.2 Open Real-Time Systems

Today, most real-time systems are built
to achieve a specific set of goals. The set
of tasks to be performed is well under-
stood at system design time.

In contrast, one challenge facing the
real-time systems community is how to
build and deliver general-purpose, open
real-time systems and applications that
permit a dynamic mix of multiple, inde-
pendently developed real-time applica-
tions to coexist on the same machine or
set of machines. Such a real-time archi-
tecture would allow consumers to pur-
chase and run multiple applications of
their choice, including applications with
real-time requirements, on their general-
purpose home and business computers,
just as they do with nonreal-time appli-
cations today.

Some of the difficulties of an effective

Real-Time and Embedded Systems .

real-time architecture supporting open
real-time computing include:

—Hardware characteristics are un-
known wuntil run time (processor
speeds, caches, memory, buses, and
I/0 devices vary from machine to ma-
chine).

—The mix of applications and their ag-
gregate resource and timing require-
ments are unknown until run time.
These together lead to the following
fundamental difficulty.

—Perfect a priori schedulability analy-
sis is effectively impossible. Some-
what different and more flexible ap-
proaches will likely be needed than
are now typically used for building
fixed-purpose real-time systems.

Another possible difference is that
perfect execution may not be the most
important criterion for open, consumer
real-time systems. Rather, for non-
safety-critical systems, the right crite-
rion is the most cost-effective execution,
as perceived by the consumer. For in-
stance, the consumer might choose to
purchase a $50 video player application
that happens to drop single frames un-
der rare circumstances rather than a
$400 application verified and certified
never to drop frames. For these sys-
tems, both economic and correctness cri-
teria will be applied.

3.3 Composibility

Many real-time systems are highly dy-
namic, e.g., defense systems such as
early warning aircraft, command and
control, autonomous vehicles, missile
(control) systems and complex ship sys-
tems. These systems operate for long
periods in fault-inducing and nondeter-
ministic environments under rigid time
constraints. They need to be robust
while delivering high real-time perfor-
mance. They need to evolve and use
legacy components. Composition has
long been recognized as a key issue for
these systems. However, composition
has largely focused on functional compo-

755

sition. A current research objective is to
develop the notion of composition across
three interacting domains: function,
time, and fault tolerance. Both off-line
and on-line solutions are required. The
results should permit verification. Thus,
the results will lead to adaptive high-
performance fault-tolerant embedded
systems that dynamically address real-
time constraints and provide both a pri-
ori acceptable system-level performance
guarantees and graceful degradation in
the presence of failures and time con-
straints. Any on-line composition is it-
self subject to time and fault-tolerance
requirements as well as having to pro-
duce functional, timing, and fault-toler-
ant components that create the system’s
actions.

To keep the cost reasonable (in both
the short and long term), dynamic real-
time systems must utilize vendor-neu-
tral, portable programming and operat-
ing environments and adaptive fault-
tolerance techniques. The programming
environment must contain tools strong
on analysis with respect to meeting
fault-tolerance and real-time con-
straints. The operating environment
must support dynamic, flexible, and
adaptive behavior under time con-
straints, easy interoperability with com-
mercially available products, and easy
porting to other platforms. The adaptive
fault tolerance must be user-specifiable
and tailored to each application and
function.

3.4 Software Engineering

Although the discipline of software en-
gineering has always been motivated by
large-scale complex systems, most of
which involve substantial real-time re-
quirements, the bulk of the research
and products in this field addresses only
functional issues. Incorporation of capa-
bilities to express and manage timing,
dependability, and other nonfunctional
constraints, if done at all, has typically
been left to specialized versions that fail
to make it into mainstream releases
(witness the large number of working

ACM Computing Surveys, Vol. 28, No. 4, December 1996

756 . J. A. Stankovic et al.
groups currently laboring to extend
CORBA to accommodate real-world sys-
tems). Since these retrofitted tools are
never quite satisfactory, real-time sys-
tem engineers resort to developing their
own tools specialized for the current
project. Both communities rely on a
static approach in which a fixed set of
requirements is mapped onto a known
platform, with no inherent accommoda-
tion for evolvability in either the under-
lying hardware or the system require-
ments.

In spite of its limited success to date
in addressing the more constrained real-
time system problem, software engi-
neering will need to undergo a radical
shift in perspective and approach if it is
to remain relevant in this new environ-
ment:

—Time, dependability, and other QoS
constraints must become first-class
concerns, coherently integrated with
functionality at all levels from re-
quirements specification through ar-
chitecture, design, implementation,
and execution,;

—Evolvability must be ensured by sepa-
rating platform-dependent concerns
from application concerns (the same
software should run wunchanged
whether the underlying platform is a
dedicated LAN or a shared wide-area
environment);

—Software must be structured into
composible modules in which inter-
faces capture not only functionality
but assumptions about the environ-
ment and conditional guarantees
about service relative to the assump-
tions;

—Software must be designed to be
adaptive and configurable, enabling
application-dependent tradeoffs for
timeliness, precision, and accuracy to
be negotiated in response to changes
in the environment;

—Timing constraints, in particular on
individual components, must be dy-
namically derived and imposed on the
basis of end-to-end requirements.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

The technologies required to realize
this vision draw on capabilities previ-
ously considered in relative isolation.
Aside from the language and metaproto-
cols addressed elsewhere, several tech-
nologies currently targeting static de-
sign environments such as formal
methods, resource management algo-
rithms, compilers, and schedulability
analyzers must be integrated and re-
packaged as efficient run-time services
in order to dynamically assure QoS re-
quirements.

This research will result in a capabil-
ity to rapidly develop, deploy, and
evolve complex real-time software sys-
tems on arbitrary platforms, with auto-
matic adaptation to the characteristics
of those platforms and the operating
environment.

3.5 The Science of Performance
Guarantees

Classical real-time systems have pro-
vided off-line deterministic guarantees
in meeting safety and real-time require-
ments subject to failure and environ-
mental assumptions [Klein et al. 1993].
The collection of algorithms and analy-
sis that exists for these static, determin-
istic guarantees can be referred to as a
science of performance guarantees. As
systems become larger, more dynamic,
and deployed in nondeterministic and
less safety-critical environments, an ex-
panded science of performance guaran-
tees is required to support the develop-
ment of these new systems.

For example, for dynamic real-time
systems, on-line admission control and
dynamic guarantees have been utilized
for some time. However, for the most
part, analysis of these systems has re-
lied on simulation and testing. What is
required is a science of performance
guarantees that can provide a more for-
mal analysis of dynamic real-time sys-
tems when the environment is not fully
predictable or controllable and when
failures occur.

In addition, as real-time system tech-
nology is being applied to applications

Real-Time and Embedded Systems .

such as stock market trading and multi-
media, there is a need for probabilistic
guarantees that are applied to the gen-
eral notion of QoS requirements. For
example, it is neither necessary nor
cost-effective to guarantee the delivery
of every packet of a multimedia video
stream. A science of performance guar-
antees needs to be developed that per-
mits accurate analysis of meeting prob-
abilistic requirements of various timing
and delay specifications. Part of the ex-
panded science of performance guaran-
tees may include new extensions of
queueing theory that emphasize meet-
ing deadlines.

Timing validation is a central and key
area of research for the science of per-
formance guarantees, and for real-time
and embedded computing in general.
The merits of different validation algo-
rithms are measured in terms of their
complexity, robustness, and degree of
success. For example, some existing val-
idation algorithms run in constant time,
or O(n) time, where n is the number of
tasks in the system. They are well
suited for on-line timing wvalidation.
More complex algorithms run in pseudo-
polynomial time, but have better perfor-
mance in other dimensions such as min-
imizing total schedule length. They can
be used off-line.

Every schedulability condition and
validation algorithm is based on some
workload model. When applied to a sys-
tem, the conclusion of the algorithm is
correct if all the assumptions of the
model are valid for the system. A vali-
dation algorithm is robust if its conclu-
sions remain correct, even when some
assumptions of its underlying workload
model are not completely accurate. The
use of a robust validation algorithm sig-
nificantly reduces the need for an accu-
rate characterization of the applications
and the run-time environment, as well
as the efforts in analysis and measure-
ment of the individual applications for
validating the workload model. For ex-
ample, the existing validation algo-
rithms based on the periodic task model
are robust. Although the model assumes

757

that jobs in each task are released peri-
odically and execute for an equal
amount of time, such a validation algo-
rithm remains correct in the presence of
deviations from periodic behavior.

Efficiency and robustness can be
achieved easily if the degree of success
of the validation test is not a concern. A
validation algorithm has a low degree of
success when it is overly pessimistic
and declares tasks unschedulable ex-
cept when system resources are unduly
underutilized. A scheduler using a vali-
dation algorithm with a low degree of
success may reject too many new tasks
that are in fact schedulable and accept-
able.

New research in timing validation
technology is required because various
limitations in the state of the art make
it inadequate for many modern and fu-
ture real-time systems:

(1) Existing schedulability conditions
and validation algorithms produce
unacceptably low degrees of success
for applications with sporadic pro-
cessing requirements, i.e., applica-
tions in which tasks have widely
varying release times, execution
times, and resource requirements.
Similarly, they cannot take into ac-
count, in a sufficiently accurate
manner, the unpredictable behavior
of the hardware platform and vari-
able amounts of time and resources
consumed by the system software
and application interfaces. As a
consequence, they are overly pessi-
mistic when applied to sporadic ap-
plications, especially in large, open
run-time environments built on com-
modity computers, networks, and sys-
tem software.

Many existing validation algorithms
are based on deterministic workload
and resource models and work for
deterministic timing constraints.
Some of these algorithms are not
applicable and others may not be
robust when used to validate proba-
bilistic timing constraints. The se-
vere shortage of existing real-time

(2)

ACM Computing Surveys, Vol. 28, No. 4, December 1996

758 o J. A. Stankovic et al.
benchmark applications makes ac-
curate calibration and validation of
the probability distributions as-
sumed by the underlying workload
and resource models nearly impossi-
ble now and in the near future.
Therefore, probabilistic validation
algorithms must be sufficiently ro-
bust and remain correct even when
applied to systems for which some
assumptions of the models are not
valid.

Most existing validation algorithms
are for statically configured systems
(i.e., systems in which applications
are partitioned and processors and
resources are statically allocated to
the partitions).

3)

Recent efforts in validation are di-
rected toward the development of new
approaches, theories, and algorithms
that do not have these limitations.

3.6 Reliability and Formal Verification

As computers become essential compo-
nents of complex systems, improve-
ments in reliability become increasingly
important. There are many techniques
developed and used in practice for im-
proving reliability, ranging from static
analysis based on formal methods and
scheduling theory to dynamic analysis
based on testing and run-time monitor-
ing and checking. Although these tech-
niques are quite effective when applied
independently to small-scale systems, it
is important to have a common frame-
work on which these different tech-
niques can be uniformly applied to
large-scale systems. With a common
framework, one model of the system is
specified and then used for both static
and dynamic analyses. This would save
effort in developing and specifying mod-
els, since each technique requires its
own model of the system. Furthermore,
it would make it unnecessary to check
consistency between models used by dif-
ferent techniques.

Such a common framework can be
developed by extending an existing real-

ACM Computing Surveys, Vol. 28, No. 4, December 1996

time formalism. There are four different
widely used classes of real-time formal-
isms: logics, automata and state ma-
chines, Petri nets, and process algebras.
Each of these formalisms can probably
be integrated with scheduling, testing,
and run-time monitoring and checking
techniques to provide a common frame-
work. There have been some promising
preliminary efforts in integrating pro-
cess algebra with scheduling and logics
with scheduling theory, in creating test
generation from specifications and mon-
itoring based on specifications. For ex-
ample, real-time processes and logics
have been extended with schedulability
analysis so that the same specification
can be subjected to the analysis of both
schedulability and functional correct-
ness. Furthermore, some preliminary
work has been done on testing of real-
time properties based on formal specifi-
cations. In particular, test suites have
been automatically generated from
specifications, and specifications have
been used as oracles during the testing
process. Much work is needed to deter-
mine their effectiveness in practice.

In general, the amount of detail
present in implementations is much
greater than that captured in specifica-
tions. This makes it imperative to re-
tain traceability of real-time require-
ments from application description to
low-level implementation. A multilevel
specification technology is needed
whose applicability is not limited to ab-
stractions in terms of state machines,
Petri nets, or other formalisms. Instead
of performing a mapping from a high-
level abstraction of a system to its de-
tailed implementation, what is needed
is a multilevel specification mechanism
to establish the preservation of real-
time requirements in terms of condi-
tions on the low-level implementation.
Such a technology should ensure the
correct functioning of the system
through monitoring and checking at run
time. It should be possible to use multi-
level specifications to derive what condi-
tions to check at run time. Better un-
derstanding of how to check correctness

Real-Time and Embedded Systems .

of real-time systems at run time is es-
sential in achieving the reliability of
complex real-time systems. In the same
vein, a multilevel specification technol-
ogy can be used at design time to catch
design errors through simulation and
other techniques. Recent work has indi-
cated that it is possible to combine sim-
ulation with model checking. The ad-
vantage of this combination is that the
part of the state space that needs to be
considered by the model checker can be
restricted by the path formula repre-
senting the simulation trace wunder
question. Since it is unlikely that model
checking alone can ascertain the cor-
rectness of a low-level implementation,
techniques such as multilevel specifica-
tion, coupled with an appropriate design
methodology, for the imposition of real-
time requirements are important.

3.7 General System Issues

A vast number of important research
issues exist in the architecture, commu-
nications, operating systems, and data-
base areas of real-time systems. First
and foremost is the specialized support
from these areas in solving the key re-
search issues presented in other parts of
this paper, i.e., the science of perfor-
mance guarantees, system evolution, re-
liability, and so on. Second, each of
these areas has its own research prob-
lems.

For brevity, a few open questions are
listed for each area:

—What architecture changes are neces-
sary to better support the calculation
of worst-case execution times?

—How can the impact of various types
of caches be included in the computa-
tion of worst-case execution time?

—How can guarantee-based time-con-
strained communication of various
types be implemented and analyzed?

—How can real-time multicasting be ef-
ficiently implemented?

—How can a predictable real-time
thread package be implemented?

759

—What empirical studies should be un-
dertaken to help support the creation
of real-time models?

—What are good resource and workload
characterization models for real-time
systems?

—How can hardware-software co-design
be done for real-time systems?

—What support is needed for virtual
environments and multimedia, espe-
cially when significant pattern recog-
nition or other types of processing
must occur in real time?

—How can real-time transactions pro-
vide guarantees?

—What are good architectures and pro-
tocols for real-time databases so that
the temporal validity of data is main-
tained?

3.8 Real-Time Multimedia

Multimedia computing and communica-
tion has the potential to revolutionize
the way humans interact with comput-
ers, collaborate with remote colleagues,
entertain themselves, and learn about
the world. Beyond today’s applications
such as desktop video conferencing, the
future real-time transmission and pro-
cessing of continuous media will enable
the routine use of distributed virtual
environments in diverse applications
such as telemedicine and remote sur-
gery, monitoring and control of auto-
mated factories, and interactive per-
sonal advertisements.

Some challenging research issues in-
clude:

—Precise specification of the predict-
ability requirements. Most are likely
to be probabilistic in nature. One of
the challenges lies in separating end-
to-end, i.e. application-level predict-
ability requirements from internal
(sub)system-level predictability re-
quirements.

—Developing schemes for mapping pre-
dictability requirements into mecha-
nisms that can demonstrably meet
the requirements. Where algorithms

ACM Computing Surveys, Vol. 28, No. 4, December 1996

760 o J. A. Stankovic et al.
have been developed for providing ab-
solute guarantees for individual dy-
namic requests, assuming that worst-
case needs are known, the challenge
lies in understanding the macro- or
system-level predictability properties
of such algorithms and in providing
probabilistic guarantees when re-
source needs of requests are also
known probabilistically. Accomplish-
ing this in a layered distributed and
heterogeneous system demands new
approaches for composing and inte-
grating QoS guarantees.

One possible approach to the new
analysis requirements is to use queue-
ing theory. Queueing theory is a well-
known body of techniques and methods
designed to describe the resource-shar-
ing behavior of systems and applica-
tions with a substantial stochastic ele-
ment. The difficulty with queueing
theory is that it largely focuses on equi-
librium behavior and aggregate QoS
measures (such as average response
time). It does not allow us to determine
if individual applications meet their
own QoS specifications.

An important future challenge will be
the development of an integrated set of
analysis tools that combines the focus
on application QoS satisfaction associ-
ated with real-time scheduling theory
with the ability to handle a wide range
of stochastic application and system be-
havior associated with queueing theory.
Furthermore, this methodology must
provide predictable resource sharing by
tasks with a range of QoS requirements.
The resulting theory might be called
real-time queueing theory for guaran-
teed systems.

3.9 Programming Languages

Given the broad range of real-time re-
quirements (and other dependability re-
quirements), many different aspects of
guarantees and the numerous schedul-
ing schemes, it is unfortunate but not
surprising that programming languages
are, in general, very weak in supporting

ACM Computing Surveys, Vol. 28, No. 4, December 1996

these needs [Burns and Wellings 1989].
They lack the expressive power to deal
with the generality of temporal require-
ments and implementation strategies.
The inability to program such proper-
ties is a serious impediment to their
transfer into industrial practice.

As it is unlikely that a single static
language will be able to accommodate
all requirements (including emerging
ones), it is necessary to look for more
effective structuring mechanisms for
programming languages. Developments
in the OOP paradigm have drawn a
distinction between functional and non-
functional behaviors. The functional be-
havior is expressed within a computati-
nal model, but the computational model
itself can be altered (enhanced, modi-
fied, etc.) by programming at the meta-
level. This process, known as reflection,
will enable behavioral aspects to be ad-
dressed, and has the potential for signif-
icantly improving the effectiveness of
programming real-time systems. The
ability to manage a wide range of re-
quirements, timing guarantees, and
scheduling approaches via metalevel
programming is a key challenge.

3.10 Education

Fundamentally, teaching real-time sys-
tems is teaching the science of perfor-
mance guarantees. Ideally, this science
would be treated in much the same
manner, and indeed in parallel with the
treatment of the science of formal veri-
fication of logical correctness, in an un-
dergraduate computer science and engi-
neering program. Thus enabling
students to manipulate programs and
systems both as mathematical objects
and as components within larger sys-
tems; in particular within systems that
interact with processes in the real
world.

There are at least two distinct aspects
of the teaching of real-time systems.
The first concerns the understanding of
the execution of a (sequential) program
in time. Here the issues are those of
management of time as a basic re-

Real-Time and Embedded Systems .

source, the consideration of explicit
time constraints, and the development
of appropriate abstractions of execution
time for use in performance-critical pro-
grams. Just as a course in data struc-
tures studies various fundamental ab-
stractions of physical memory and
develops insights into how problems can
be decomposed into primitive operations
on these abstractions, a real-time com-
ponent in an introductory computer sci-
ence sequence would emphasize how ex-
ecution time can be organized to realize
a real-time constraint. For example, we
might present program-structuring
techniques (including data structures)
that allow execution time to be manipu-
lated abstractly. Examples of such
structures include sieves and refine-
ments from the imprecise computing lit-
erature. This portion of the curriculum
is largely algorithmic, and indeed builds
naturally on existing analysis of algo-
rithms. The key differentiating aspect,
however, is the fact that traditional
measures of execution time such as
asymptotic complexity do not provide
enough leverage for solving real-time
problems. Alternate techniques such as
interval arithmetic and the calculus of
execution time intervals are required.
The second aspect concerns the man-
agement of logical and physical concur-
rency in time. This material emphasizes
the highly concurrent nature of most
real-time systems. Two subthemes are
the traditional study of cooperating se-
quential processes and the more special-
ized study of the effects of competition
for shared resources among processes.
The former concerns the distribution of
function among, and the synchroniza-
tion and communication between, multi-
ple, logically parallel processes. Ab-
stractly, the latter is the analysis of how
sequential execution time is dilated in
the face of competition for resources and
how the dilation process can be man-
aged to ensure performance guarantees.
The challenge is to integrate real-
time system concepts into existing com-
puter science curricula so as to create
an awareness of the basic issues in stat-

761

ing, manipulating, and realizing perfor-
mance guarantees. For example, the
real-time systems community should
consider the development of a series of
course companion monographs along
the lines of the performance modeling
Performance Supplement series com-
missioned by the Computer Measure-
ment Group (CMG) and the ACM Spe-
cial Interest Group on Measurement
and Evaluation (SIGMETRICS). It
would also be beneficial to integrate
course material with practical training,
possibly via industry projects.

4. TEN-YEAR VISION

Ten years from now almost all products
and engineering processes will contain
real-time features and embedded pro-
cessors. There will be a greater demand
for safe, dependable, and certifiable
real-time systems. The demand will in-
crease if there are major financial disas-
ters or loss of life. Eventually, we
should see the rise of a vital industry of
third-party components that can be
composed with respect to functionality,
timing, and dependability.

For example, over the next ten years
there will be an enormous increase in
the prevalence of open systems. A sig-
nificant fraction of the global population
will interact with some form of open
real-time system. Such systems will be
highly distributed, offer a wide range of
services including the control of com-
monplace artifacts, deal with many
forms of data, be accessed over very
wide areas, and be constantly changing
and evolving. Moreover, they will begin
to play an important role in the econo-
mies of developed and developing na-
tions. While many operational aspects
of these open systems are performance-
related rather than real-time, there are
at least three areas in which real-time
systems are likely to play a key role.

(1) High-integrity real-time services
that need to be delivered in well-
defined time intervals. For example,
there is a need to synchronize the

ACM Computing Surveys, Vol. 28, No. 4, December 1996

762 . J. A. Stankovic et al.
release of important financial data
to a number of different interna-
tional centers, with very tight jitter
requirements.

(2) QoS attributes that equate to real-
time parameters. For example, vari-
ous bandwidth-allocation algo-
rithms require a precise definition
of the temporal needs of video and
audio streams in order to undertake
the mnecessary run-time reserva-
tions. QoS will become a key issue
once services demand payment at
the point of delivery.

(3) The ubiquitous nature of the perva-
sive open systems of the future may
well require high-level temporal
controls so that the sheer complex-
ity of interacting with these systems
can be managed. Hence, simple com-
mands such as “deliver A to X 5
minutes before B is delivered to Y”
may become a natural way of ex-
pressing commands.

These three areas indicate that open
system protocols (in particular the in-
terfaces to services, controls, and data
objects) must explicitly deal with a
range of nonfunctional issues such as
dependability and availability of re-
sources, QoS guarantees, and real-time
requirements. Failure to address these
issues will lead to increased dissatisfac-
tion and eventually economic damage.
Past lessons have taught us that non-
functional properties cannot be added
as an afterthought; they must be at the
core of the architecture and protocol
designs. Success in integrating real-
time methods into open systems thus
has the potential for significant social
impact.

As real-time technology becomes in-
creasingly used in everyday computing,
it is our hope that widely agreed-upon
interfaces and methods supporting open
real-time systems will evolve. Such a
development will produce a vital indus-
try providing dependable third-party
real-time components that can be com-
posed, assembled, and used when build-

ACM Computing Surveys, Vol. 28, No. 4, December 1996

ing real-time systems—just as indepen-
dently developed software components
from multiple vendors can be used for
building nonreal-time consumer appli-
cations today. This is both desirable and
achievable.

The eventual result should be the pro-
liferation of many products and systems
that are safer, cheaper, and more avail-
able. If real-time technology is truly
successful, the technology will be invisi-
ble to the public.

If accurate, our predictions of the
growing importance of real-time sys-
tems technology over the next decade
imply the need for a concerted effort to
integrate real-time systems concepts
into computer science curricula. Many
of the basic concepts are well developed
and well understood within the research
community; others are still evolving and
under investigation. A first round of
real-time systems textbooks is due out
during academic year 1996-1997, and
will serve to formalize the training of
graduate students and specialized un-
dergraduates in real-time systems.

5. SUMMARY

Real-time computing is an enabling
technology for many current and future
applications that affect public safety,
competitiveness, the economy, and life-
style. Many results have been devel-
oped, but difficult research and transfer
of technology issues remain [Stankovic
1988]. For example, real-time research
has yet to grapple with three major
realities concerning real-time applica-
tions:

—real-world real-time systems are ex-
pected to survive and continue to op-
erate even when not all timing con-
straints are met or when components
fail,

—due to economic and portability con-
siderations, the tendency towards the
use of off-the-shelf hardware and soft-
ware components to build real-time
systems is increasing;

Real-Time and Embedded Systems .

—the prohibitive cost of modernizing an
industrial real-time computing sys-
tem often results from the down time
and risks associated with inserting
time-dependent new technologies into
a functioning industrial system.

One proposed strategic decision is to
develop a major funding and interna-
tional research initiative in real-time
computing to capitalize on current re-
sults, establish generic technology for
the future, and thereby pay large divi-
dends for safety and the economy. As an
example, results that make possible an
evolvable real-time computing open in-
frastructure would aid the safe and cost-
effective insertion of hardware, soft-
ware, and domain technologies into
functioning industrial systems, creating
a direct linkage between the ability to

763

innovate and superiority in product
quality and process agility.

REFERENCES

BuURNs, A., AND WELLINGS, A. 1989. Real-Time
Systems and Their Programming Languages.
Addison-Wesley, Reading, MA.

KLEIN, M. H., RALYA, T., POLLAK, B., OBENZA, R.,
AND HARBOUR, M. G. 1993. A Practitioner’s
Handbook for Real-Time Analysis. Kluwer Ac-
ademic, Boston, MA.

LEE, Y.-H., AND KriSHNA, C. M. 1993. Readings
in Real-Time Systems. IEEE Computer Soci-
ety Press, Los Alamitos, CA.

SoN, S. 1995. Advances in Real-Time Systems.
Prentice Hall, Englewood Cliffs, NJ.

STANKOVIC, J. 1988. Misconceptions about real-
time computing: A serious problem for next
generation systems. IEEE Computer 21, 10
(Oct.), 10-19.

StaNkovic, J., AND RamMamrITHAM, K. 1988.
Hard Real-Time Systems. IEEE Computer So-
ciety Press, Los Alamitos, CA.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

