
The Xilinx EDK Toolset:
Xilinx Platform Studio (XPS)

The Xilinx EDK Toolset:
Xilinx Platform Studio (XPS)

Building a Base System Platform

By Jason Agron



What is Xilinx EDK?What is Xilinx EDK?

• EDK = Embedded Development Kit.
• It is a set of tools used to build embedded

processing systems.
• i.e. Systems-On-Chip (SoCs).

• Processors (MicroBlaze, PowerPC).
• Interconnect (PLB, OPB, FSL, Custom, etc.).
• Memories (BRAM, DDR).
• Peripherals (UART, GPIO, Ethernet, Custom, etc.).

• Provides a single environment for…
• Simulation
• Synthesis.
• Compilation.



How Do I Use Xilinx EDK?How Do I Use Xilinx EDK?

• Xilinx Platform Studio (XPS) - the actual tool.
• Design flow…

• First, create the hardware platform.
 Select all of the peripherals.
 Connect all of the peripherals.

• Second, create the software for the platform.
 Write SW to “make things work”.

• Iterate if needed.

• The FPGA has a malleable fabric…
• So both SW and HW are flexible and can be changed…

• At “compile-time”.
• At “run-time” (dynamic reconfiguration).



Important EDK FilesImportant EDK Files

• MHS File:
• Describes all components and connections in a system.

• MSS File:
• Describes all SW drivers associated with components

of a system.
• UCF File:

• Describes the connections of all top-level ports.
• All top-level ports have connections to specific

physical pins on the FPGA.



How To Get StartedHow To Get Started

• Open up XPS.
• Create a new project.

• Select “File”, “New Project”
• Select “Base System Builder…”

• Provides a wizard to help get basic system
established.

• Click OK.



XPS - Getting StartedXPS - Getting Started



XPS - New Project CreationXPS - New Project Creation



XPS - Creating The Base SystemXPS - Creating The Base System

• Now, create a directory for this EDK project.
• Saved as a .xmp file.

• IMPORTANT NOTE!!!!
• Make sure that the absolute path contains no spaces!!!!



XPS - Base System BuilderXPS - Base System Builder

• The Base System
Builder window will
open.

• Select “Create a New
Design…”.

• Now we can select the
base components of
our custom SoC.



XPS - Board SelectionXPS - Board Selection

• We must select the
platform we wish to
use.

• In our case it is…
• Vendor = Xilinx.
• Board = XUP.
• Rev # = C



XPS - Processor SelectionXPS - Processor Selection

• Choice as to which
processor to use in our
SoC.

• PowerPC:
• PPC405 Hard Core.
• Physical CPU embedded

within FPGA fabric.
• MicroBlaze:

• Soft core.
• Must be synthesized

(implemented using the
FPGA fabric).

• We will use the
MicroBlaze.



XPS - Processor ConfigurationXPS - Processor Configuration

• Choose customizable
CPU settings.

• In our case…
• Bus freq. = 100 MHz.
• Debug I/F = On-chip.
• Local mem. = 16 KB.
• No cache.
• Disabled FPU.

• Simple, but highly
effective.



XPS - I/O Interface ConfigurationXPS - I/O Interface Configuration

• Choose from available I/O
interfaces.

• Ethernet.
• allows boards to be

networked.
• RS232 UART.

• Serial protocol I/O for the
board.

• In our case…
• No Ethernet.
• RS232 + UARTLite.

• 9600 Baud. No parity
• 8 Data bits.



XPS - I/O Interface ConfigurationXPS - I/O Interface Configuration

• Configure additional I/O
interfaces.

• SysACE.
• Allows for file storage.

• General Purpose I/O.
• GPIO.
• Used for LEDs, switches,

and push buttons.

• In our case…
• Only use the GPIOs for

LEDs, DIPSWs, and
PushButtons (No SysACE).



XPS - I/O Interface ConfigurationXPS - I/O Interface Configuration

• Configure additional
memory interfaces.

• Different types of external
memory.

• Often times DDR.
• Large amount of storage.
• Cheap.
• Fast.

• For this system…
• No external memory.



XPS - Add Internal PeripheralsXPS - Add Internal Peripherals

• Xilinx provides a large
library of peripherals:
• I/O
• Debug
• Busses
• Memory
• Timers
• Interrupts
• A/D

• In our case…
• We will add internal

peripherals at a later time.



XPS - Software SetupXPS - Software Setup

• Configuration of software-
related properties of the
system.

• I/O Configuration:
• STDIN = UART.
• STDOUT = UART.

• Include sample
applications:
• Memory test.
• Peripheral self-test.

• In our case…
• Use the defaults.



XPS - Application ConfigurationXPS - Application Configuration

• Configuration of
application-related
properties of the system.

• Choose where instructions
and data are stored in the
system.

• In our case…
• Our system is simple a

single memory for
instructions and a single
memory for data.

• Use the defaults.



XPS - System CreatedXPS - System Created

• System configuration is
complete.

• Displays all of the
included components and
their associated address
spaces.

• What are address spaces?
• Why is knowing the

address space of a device
useful?

• Click “Generate”…



XPS - BSB CompleteXPS - BSB Complete

• Congratulations!!!!
• You have just created a custom

SoC!
• Now click on “Finish”, and you

can begin…
• Using the system.
• Developing custom HW and

SW for the system.
• BSB has just generated a .mhs

file for your system.
• A file that lists all components

and how they are configured
and connected.

• This file can be translated
directly to VHDL or Verilog,
and synthesized to the FPGA.



XPS - Project TabXPS - Project Tab



XPS - IP Catalog TabXPS - IP Catalog Tab



XPS - Applications TabXPS - Applications Tab



XPS InterfaceXPS Interface

• System Assembly View:
• Graphical view of system.
• Can edit configurations, port connections, bus

connections, and memory spaces for all components.
• Tabs:

• Project Tab.
• Project info (.mhs, logs, etc.).

• IP Catalog Tab.
• Available peripherals that can be added to the system.

• Application Tab.
• Available SW projects that can be run on the system.



How To Run An ApplicationHow To Run An Application

• Select the application of choice.
• Compile the sources for the application.

• Right-click and select “Build Application”.

• Execute the test on the base system platform.
• This requires the following to be combined…

• Hardware bitstream (.bit)
• Software executable (.elf)

• This is done by selecting “Device Configuration”.
• “Update Bitstream” - combines HW/SW (.bit + .elf).
• “Download Bitstream” - downloads the configuration to the

board.
 Over the USB-based JTAG connection.



Monitoring Software Execution
On The FPGA

Monitoring Software Execution
On The FPGA

• How do you see what is happening on the FPGA?
• Normally in software you use print() statements.
• The output goes to the screen.

• In this system, STDIN/STDOUT are routed to the
serial port.
• We must monitor the serial port from an external host

to see what is happening.
• In order to “see” what is executing…

• Open up a terminal windows.
• Minicom (Linux) or Hyperterminal (Windows).

• Setup the correct communication parameters
• Baud rate = 9600.



Creating New SW ApplicationsCreating New SW Applications

• Select “Software”…
• Click on “Add Software Application Project”.

• Enter the new project name.
• Also choose which CPU to run the application on.

• Now a new application tab entry will appear.
• You can now add/edit sources for this application.

• In order to run this new application…
• Right-click on it.
• Select “Mark to initialize BRAMs”.

• Instructs the tool that this application is to be “combined” with
the bitstream.

• Now, when updating the bitstream, this application will
be used.



Integration of IP CoresIntegration of IP Cores

• EDK allows one to add IP cores to a system.
• Pre-built cores from Xilinx.
• Custom cores.

• Additionally, there is a Create/Import Core Wizard that…
• Allows one to quickly create bus interfaces for custom IP cores.

• PLB, OPB, FSL interfaces.
• Imports cores into an EDK repository.

• So that the IP cores can be added into a system.



How to Create/Import CoresHow to Create/Import Cores

• Select “Hardware”…
• Click on “Create/Import Peripheral”.

• Creating a new peripheral…
• Peripheral name.
• Bus interface type (PLB, OPB, FSL).
• Interface features:

• Master/Slave.
• Interrupts and Resets.
• Registers.
• Accessible Signals.

• Importing a peripheral…
• Not recommended, much easier to do via cut/copy from

the command line.



Initial AssignmentInitial Assignment

• Create a new SW project…
• Make it do the following…

• Print “Hello <yourName>!”
• Run the SW on the board and demonstrate

that it works correctly.
• This may not seem like much, but…

• You just created a SoC (System-On-Chip).
• You just cross-compiled a program to run on

“bare-metal” (no OS).



QuestionsQuestions

1) What is an FPGA?
2) What is an SoC? Why is it different from your

desktop computer system?
3) What does soft-core IP mean?
4) What is an MHS, MSS, and UCF file?
5) What does cross-compile mean?
6) Why does it take so long to build the HW

portion of your system?
7) How does the desktop computer program the

FPGA, how does it monitor the FPGA?


