
Computer Networks 46 (2004) 343–362

www.elsevier.com/locate/comnet
Explicit transport error notification (ETEN) for
error-prone wireless and satellite networks
Rajesh Krishnan a, James P.G. Sterbenz b,*, Wesley M. Eddy c,
Craig Partridge a, Mark Allman d

a BBN Technologies, Cambridge, MA, USA
b University of Massachusetts, Amherst, MA, USA

c Ohio University, USA
d International Computer Science Institute, Berkeley, CA, USA

Available online 14 July 2004
Abstract

Wireless and satellite networks often have non-negligible packet corruption rates that can significantly degrade TCP

performance. This is due to TCP�s assumption that every packet loss is an indication of network congestion (causing

TCP to reduce the transmission rate). This problem has received much attention in the literature. In this paper, we take

a broad look at the problem of enhancing TCP performance under corruption losses, and include a discussion of the

key issues. The main contributions of this paper are: (i) a confirmation of previous studies that show the reduction of

TCP performance in the face of corruption loss, and in addition a plausible upper bound achievable with perfect knowl-

edge of the cause of loss, (ii) a classification of the potential mitigation space, and (iii) the introduction of a promising

new mitigation that employs rich cumulative information from intermediate nodes in a path to form a better congestion

response.

We first illustrate the performance implications of corruption-based loss for a variety of networks via simulation. In

addition, we show a rough upper bound on the performance gains a TCP could get if it could perfectly determine the

cause of each segment loss––independent of any specific mechanism for TCP to learn the root cause of packet loss.

Next, we provide a taxonomy of potential practical classes of mitigations that TCP end-points and intermediate net-

work elements can cooperatively use to decrease the performance impact of corruption-based loss. Finally, we briefly

consider a potential mitigation, called cumulative explicit transport error notification (CETEN), which covers a portion

of the solution space previously unexplored. CETEN is shown to be a promising mitigation strategy, but a strategy with

numerous formidable practical hurdles still to overcome.

� 2004 Published by Elsevier B.V.
1389-1286/$ - see front matter � 2004 Published by Elsevier B.V.

doi:10.1016/j.comnet.2004.06.012

* Corresponding author.

E-mail addresses: krash@bbn.com (R. Krishnan), jpgs@acm.org (J.P.G. Sterbenz), weddy@irg.cs.ohiou.edu (W.M. Eddy),

craig@bbn.com (C. Partridge), mallman@icir.org (M. Allman).

mailto:krash@bbn.com 
mailto:jpgs@acm.org 
mailto:weddy@irg.cs.ohiou.edu 
mailto:craig@bbn.com 
mailto:mallman@icir.org 


344 R. Krishnan et al. / Computer Networks 46 (2004) 343–362
Keywords: Explicit transport error notification (ETEN); Explicit loss notification (ELN); Explicit congestion notification (ECN);

Wireless and satellite networks; TCP performance; Congestion; Corruption; Bit errors; Channel fades
1. Introduction

The transmission control protocol (TCP) [35] is

the most widely used transport protocol in the

TCP/IP suite by today�s common Internet users
and applications. One obstacle to good perform-

ance of TCP over internetworks with wireless

and satellite components is non-negligible bit-error

rates (BER). TCP guarantees that corrupted data

will be retransmitted by the data sender, hence

providing a reliable byte-stream to applications.

However, packet loss is also used by TCP to deter-

mine the level of congestion in the network [23]––
as traditionally, the bulk of packet loss in

networks comes from router queue overflow (i.e.,

congestion). Therefore, to avoid congestion col-

lapse TCP responds to packet loss by decreasing

its congestion window (cwnd) [4,23], and therefore,

the sending rate. The reduction of the congestion

window is not needed to protect network stability

in the case when losses are caused by corruption
and, therefore, these needless reductions in the

sending rate have a negative impact on a connec-

tion�s performance with little (if any) overall bene-

fit to the network.

If a TCP sender can distinguish packets lost due

to congestion from packets lost due to corruption,

better performance may be achieved. The perform-

ance benefit can be realized if TCP can retransmit
a packet lost due to corruption without needlessly

reducing the transmission rate, while continuing to

protect network stability by decreasing the sending

rate when loss is caused by network congestion.

Several approaches have been proposed in the

literature to distinguish congestion losses from

corruption losses. For instance, methods to implic-

itly distinguish corruption from congestion have,
thus far, not been successful [10,16]. However, per-

formance enhancing proxies (PEPs) [12] have been

shown to improve TCP performance [7], but break

the end-to-end semantics of the transport layer

connection. In addition, PEPs that require intru-

sive header inspection are not able to impact
encrypted traffic (e.g., traffic utilizing IPsec [26]).

Earlier work on explicit loss notification in the

context of TCP over wireless and satellite links is

described in [8,9,40,41]. An analysis of situations

that can benefit from explicit transport error noti-
fication (ETEN) mechanisms is given in [16].

The goal and contribution of this paper is as

follows. First, unlike previous work in this area,

the bulk of this paper explores the problems

caused by corruption-based loss and possible mit-

igations in a broad and generic fashion without

regard to any particular mitigation mechanism.

To this end, Section 2 illustrates the impact of cor-
ruption-based packet losses on standard TCP per-

formance across a variety of network topologies

and traffic patterns. Additionally, Section 2 estab-

lishes a rough upper bound on the performance a

TCP can attain if the TCP can perfectly determine

the cause of a dropped segment (via using an

‘‘Oracle’’ that knows the cause of each loss). Next,

Section 3 presents a detailed taxonomy of the pos-
sible methods for mitigating the effects of corrup-

tion-based loss, including the pros and cons of

various schemes. In Section 4 we depart from the

broad, generic terms of the previous sections and

present a preliminary examination of a novel

mechanism for coping with corruption-based

losses using cumulative information provided by

the network. Finally, in Section 5 we conclude
and summarize.
2. Can ETEN help?

In this section we present several simulations to

concretely illustrate TCP�s performance problems

caused by corruption-based loss across a variety
of network types. In addition to the impact on

stock TCP, we examine a TCP variant that uses

‘‘Oracle’’ notifications to gain perfect knowledge

about the cause of packet loss and, therefore,

can mitigate the performance issues. We believe

this second TCP variant, discussed in Section 2.1,



R. Krishnan et al. / Computer Networks 46 (2004) 343–362 345
is a plausible upper-bound on the performance

gains a TCP could expect from a scheme to com-

bat the issues created by corruption-based loss.

2.1. Oracle notifications

We extended the ns-2 simulator [31] (version

2.1b9) to support our simulations. We added an

‘‘Oracle’’ to ns that sits at the end of a particular

link and reports all corruption-based loss to a

TCP sender. The TCP endpoint registers with the

Oracle (indicating a desire to receive corruption

reports) and when a corruption loss occurs the
Oracle instantaneously notifies TCP of the corrup-

tion-based loss. We modified the TCP sender to re-

cord these notifications in a table for later use

during loss recovery. Of course, this mechanism

is not realistic, but rather the instantaneous and

perfect knowledge the Oracle supplies provides

an upper bound on how potential strategies to mi-

tigate the impact of corruption-based loss could

work.

When TCP enters its traditional loss recovery

phase via fast retransmit all losses are repaired

per a standard loss recovery technique (e.g., using

SACK [28]). Stock TCP reduces the congestion

window (cwnd) by half upon a fast retransmit.

When using the Oracle, TCP queries the table of

known corruption-based losses. If the segment
being transmitted via fast retransmit was dropped

due to corruption the cwnd is not reduced, and fur-

thermore, a flag is set indicating the cwnd has not

been reduced in the current window of data. If

additional losses within the current window occur

and are congestion-based (i.e., no Oracle notifica-

tion for the loss was received) the TCP will reduce

cwnd upon retransmission of the first congestion-
based loss in the window and clear the flag that

indicates a congestion response has not been in-

voked. This scheme is similar to using TCP SACK

[11] or TCP NewReno [19] in that one cwnd reduc-

tion per ‘‘loss event’’ is taken.

In the case of loss detected via the retransmis-

sion timeout (RTO), TCP behaves the same

regardless of whether Oracle notifications have ar-
rived. In other words, Oracle notifications have no

impact after an RTO. While in any given situation

this is necessarily sub-optimal a clean and general
approach remains illusive. Upon an RTO expira-

tion TCP generally makes the decision that all seg-

ments sent are no longer in the network (and the

SACK scoreboard is cleared). Therefore, if the

sending TCP uses Oracle notifications to deter-
mine that a cwnd reduction is not necessary a

potentially large burst of segments may be sent

(bursts can cause congestion in some cases [22]).

A second problem is that retransmission after an

RTO is fairly gross with TCP often sending many

more segments than necessary [3]. Therefore, in the

vast majority of the cases (based on the data pre-

sented in [3]) a segment would be retransmitted
for which no Oracle notification was received

(and, in fact was not even lost) and, therefore,

cause a cwnd reduction.

Finally, we note that in some cases (e.g., highly

interactive traffic) the optimal response to an

Oracle notification would be to retransmit the

corrupted segment immediately. However, retrans-

mission outside of a traditional TCP loss recovery
period ends up having implications later in the

connection due to the reordering of events. The

problem stems from a retransmission being queued

behind packets with higher sequence numbers.

This causes the TCP receiver to transmit duplicate

ACKs, which the sender, in turn, uses to detect

loss. The TCP sender then needs to remember

which segments have been retransmitted outside
the traditional loss recovery phase and which have

not. Accordingly the TCP sender must be able to

determine when and if to invoke congestion con-

trol. We believe that such issues could be worked

out given enough effort at redesigning TCP�s tradi-
tional notions. However, in this paper we focus on

bulk transfers, in which case the key objective is to

keep the sending rate from being needlessly re-
duced. Therefore, we did not focus on optimizing

when retransmits are sent with respect to the delay

in getting the data to the receiver.

2.2. Single flow simulations

The first set of simulations involves a simple

topology with one link between the sender and
receiver. The goal of these simulations is to illus-

trate the impact of corruption-based loss on TCP

performance, as well as to show a plausible



10e2

10e3

10e4

10e5

10e6

0 10e-11 10e-10 10e-9 10e-8 10e-7 10e-6

G
oo

dp
ut

 (
by

te
s/

se
c)

Bit-Error Rate

Stock SACK
SACK w/ Oracle

Fig. 1. LFN: Oracle vs. stock SACK TCP.

346 R. Krishnan et al. / Computer Networks 46 (2004) 343–362
upper-bound on the performance that could be

achieved with a perfect-knowledge mitigation.

In our simulations, we use three different com-

binations of bandwidth and delay for the link, as

follows: (i) a long–fat network (LFN) with a
one-way delay of 250 ms 1 and bandwidth of 10

Mbps, (ii) a short–fat network (SFN) with a one-

way delay of 25 ms and bandwidth of 10 Mbps

and (iii) a long–thin network (LTN) with a one-

way delay of 250 ms and bandwidth of 1.5 Mbps.

All transfers are run for 30 min (ensuring that even

when corruption is a very low rate event, it hap-

pens in every transfer). We applied a uniform
bit-error rate (BER) of 10�4–10�11 to the link.

The highest error rate is just under 1% packet loss

rate––above which TCP does not cope well. We

used the ns standard FullTcpSack TCP variant.

The TCP advertized window was set to 2400 seg-

ments––large enough to never be a factor in our

simulations. TCP uses a segment size of 536 bytes.

The capacity of the drop-tail queues applied to the
link is set to the delay-bandwidth product of the

network. In all the following plots the point on

the far left side of the figure (at a BER of zero)

is a baseline transfer with no corruption drops.

In this paper we report the mean of 30 runs with

each set of simulation parameters.

The simulations with BERs of 10�4 and 10�5

follow the trends shown in the following results.
Furthermore, at these BERs, the difference in per-

formance between stock SACK TCP and SACK

TCP enhanced with Oracle support is nearly

non-existent in all simulations presented in this

section. TCP�s goodput 2 at these BERs effectively

makes the plots presented in this section more dif-

ficult to read by stretching the y axis by several

orders of magnitude. Therefore, we omit these
simulations from the following discussions, but
1 The propagation delay between the Earth and a geo-

synchronous satellite is roughly one-eighth of a second, yielding

a one-way propagation delay of 250 ms and a roundtrip time of

500 ms.
2 The goodput of a flow is defined as the bandwidth delivered

to the receiver, excluding duplicate packets [20]. We calculate

the goodput by dividing the total number of unique bytes

arriving at the receiver by the duration of the TCP connection.

(Note: the header bytes of these unique packets are also

included.)
summarize the simulations with the following
two points: First, TCP performs quite poorly at

very high BERs (often obtaining an average of less

than 1 byte/s). Second, we find that the Oracle

notifications do not help TCP performance in this

regime due to the excessive loss and RTO behavior

(including RTO backoff).

Fig. 1 shows the performance of a single TCP

connection over the LFN topology as a function
of the bit-error rate plotted on a log–log scale.

The plot shows the general degradation of per-

formance as the BER increases for stock TCP.

The reduced performance motivates the study of

mechanisms to mitigate the dramatic reduction in

goodput caused by corruption-based loss. In this

situation we note that even at a BER of 10�11

the performance of stock TCP has been reduced
by roughly 10% when compared to the corrup-

tion-free case. 3

The plot also shows that with perfect knowl-

edge of the cause of drops TCP can improve per-

formance dramatically. However, as the BER

increases the performance suffers even with the

Oracle�s assistance. In this regime, the RTO plays

a large part in loss recovery––which means that
the perfect knowledge that has been gathered can-

not be reasonably applied, as discussed in Section
3 This aspect is difficult to see in the figure due to the

logarithmic scaling of the axes; we use the logarithmic scaling in

order to best illustrate how the overall performance varies with

BERs across several orders of magnitude.



10e2

10e3

10e4

10e5

0 10e-11 10e-10 10e-9 10e-8 10e-7 10e-6

G
oo

dp
ut

 (
by

te
s/

se
c)

Bit-Error Rate

Stock SACK
SACK w/ Oracle

Fig. 3. LTN: Oracle vs. stock SACK TCP.

R. Krishnan et al. / Computer Networks 46 (2004) 343–362 347
2.1. In our LFN simulations without corruption-

based loss the RTO timer never fired. On the other

hand, the RTO timer expires an average of 117

times during the Oracle assisted transfers at a

BER of 10�6 (and an average of 130 times without
the Oracle).

These results suggest that mechanisms to con-

duct loss recovery without relying on the RTO

timer when the sending rate is low would be useful.

Such mechanisms would reduce the need for the

gross loss recovery that the RTO timer often

causes [3]. In turn, finer-grained loss recovery

may help the TCP sender determine the root
causes of the loss which can then aid performance.

Mechanisms such as Early Retransmit [2] and

Smart Framing [30] may be useful in this space

and warrant further study.

Fig. 2 shows the performance of a single TCP

connection over the SFN topology as a function

of the BER on a log–log plot. When compared

to the LFN simulations presented above, the
SFN plot shows that the shorter RTT of the net-

work aids TCP performance by tightening the con-

gestion control loop. Stock SACK�s performance

first drops below full utilization (by roughly

85%) at a BER of 10�8 in this set of simula-

tions––much later than the BER of 10�11 where

the drop-off first occurs in the LFN case presented

above. Additionally, we see the performance at the
worst BER is an order of magnitude better than

the same point in the LFN simulations. While

the shorter feedback loop aids TCP performance,
10e3

10e4

10e5

10e6

0 10e-11 10e-10 10e-9 10e-8 10e-7 10e-6

G
oo

dp
ut

 (
by

te
s/

se
c)

Bit-Error Rate

Stock SACK
SACK w/ Oracle

Fig. 2. SFN: Oracle vs. stock SACK TCP.
the impact of corruption-based loss is still signifi-

cant (over an order of magnitude difference at high

error rates). Finally, in these experiments we again

observe the power in being able to determine the

cause of each packet loss and how that power is

diminished as the connection starts to rely on the

RTO for loss recovery.

Finally, Fig. 3 shows the performance of a sin-
gle TCP connection over the LTN topology as a

function of the BER plotted on a log–log scale.

In this plot we see that TCP has lower goodput

due to the smaller amount of capacity on the bot-

tleneck link than used in the LFN set of simula-

tions. However, we also note a similar decline in

performance as the BER increases, as we have

illustrated previously. Further, with the Oracle�s
help the performance is significantly improved

over stock TCP––again suggesting that mecha-

nisms that offer TCP more information about the

cause of losses would be worthwhile to bulk data

transfer applications.

2.3. Competing traffic

To verify that the above results hold in a

slightly more practical environment our next set

of simulations involves competing traffic. While

this simulation is still not a realistic Internet set-

ting, it gives a glimpse of how TCP copes with cor-

ruption-based loss when there is also contention

for bottleneck resources between various traffic

flows. The simulations presented in this section



10e2

10e3

10e4

10e5

0 10e-11 10e-10 10e-9 10e-8 10e-7 10e-6

G
oo

dp
ut

 (
by

te
s/

se
c)

Bit-Error Rate

Stock SACK
SACK w/ Oracle

Fig. 4. LTN with competing traffic.

Transport Layer Control

Error Control Congestion ControlFlow Control

348 R. Krishnan et al. / Computer Networks 46 (2004) 343–362
involve a four node topology with a TCP source

and TCP destination separated by two routers.

The link between the end nodes and the routers

has a capacity of 10 Mbps and a one-way delay

of 1 ms. The link between the routers has a capac-
ity of 1.5 Mbps, a one-way delay of 250 ms and

router queue sizes set based on the delay-band-

width product of the path (these are the same set-

tings used for the LTN experiments outlined above

and shown in Fig. 3). The competing traffic con-

sists of four constant-bit rate on/off UDP flows

in each direction over the bottleneck link (between

the routers). The on and off times of the flows are
dictated by an exponential random process with

mean on and off times of 0.5 s. When on, each flow

sends at 0.25 Mbps. When all competing flows are

active they consume two-thirds of the bottleneck

capacity. The first UDP flow in each direction is

started 60 ms into the simulation, with an addi-

tional UDP flow starting in each direction every

50 ms (until four on/off flows are active in each
direction).

Fig. 4 shows the average goodput of the end-to-

end TCP connection over 30 simulation runs as a

function of the BER on a log-log plot. The figure

shows the same general trends illustrated in the

single connection LTN case. The impact of the

bursty on/off traffic is to reduce the available bot-

tleneck capacity by roughly one-third. 4 The figure
shows that corruption-based loss negatively im-

pacts stock TCP performance in a scenario with

competing traffic. Further, the figure shows that

with perfect knowledge a TCP sender can enjoy

performance benefits across a range of BERs,

but the benefits diminish as the BER increases

and TCP relies more heavily on the RTO for loss

recovery.

2.4. Discussion

The results in this section confirm previous

work (e.g., [8,9,40,41]) in showing that schemes
4 The UDP flows are expected to consume one-third of the

capacity since the flows are set up to consume two-thirds of the

bottleneck capacity when all flows are sending at the same time

and the flows are configured to send roughly half the time.
that allow a sending TCP to determine the cause
of a segment loss would be useful to bulk transfer

applications, especially in networks with non-neg-

ligible packet corruption rates. This conclusion

holds across a number of different network types

and a range of BERs. We classify the solution

space for mitigations in the next section.
3. A taxonomy of corruption notification and

response mechanisms

In this section we present a taxonomy describ-

ing the range of mechanisms that can be used for

loss discrimination, explicit transport notification,

and mitigation. First, we offer the following defini-

tions to clearly distinguish different transport pro-
tocol mechanisms, as illustrated in Fig. 5:

� Flow control is exerted by the receiver to pre-

vent the sender from transmitting data at a rate

that exceeds the capacity of the receiver.
... ...
Loss Notification

Corruption Notification

...

...

Congestion Notification

...

Error Control Response

Fig. 5. Transport layer control.



R. Krishnan et al. / Computer Networks 46 (2004) 343–362 349
� Congestion control [15] and avoidance is used

to prevent the sender from transmitting data

too quickly for the network to handle.

� Error control is a function needed for the relia-

ble delivery of data; this function is responsible
for retransmitting information that is lost (due

to either corruption or congestion) between

the sender and receiver.

In this paper we are concerned with error con-

trol, in particular discriminating loss that is caused

by corruption from loss caused by congestion.

Congestion-based losses are caused by resource
contention or control in networks. For instance,

packets arriving at a router that has exhausted

its buffer memory may be dropped––indicating

contention caused by a mismatch in the packet ar-

rival and packet departure rates at the router. In

this paper we will use the term congestion loss to

refer to packets not arriving at their destination

due to resource contention somewhere along the
path.

Corruption is generally caused either by chan-

nel errors (such as background noise or inter-

ference) or by hardware errors in network

components [44]. Corruption can consist of bit er-

rors, packet loss, or burst errors, depending on the

duration of a particular error event. We will use

the term corruption loss to refer to packets that
do not arrive intact at their destination due to

the information contained in the packet (either

header or payload) being unexpectedly changed 5

during transit.

3.1. Loss discrimination

Loss discrimination refers to determining
whether a packet loss event was due to corruption

or congestion. We define two major classes of loss

discrimination: implicit and explicit.

3.1.1. Implicit loss discrimination

Implicit loss discrimination does not rely on

mechanisms that definitively identify the causes
5 Some packet transformations, such as TTL reduction, are

expected and are not considered to be packet corruption.
of packet losses. Rather, implicit discrimination

mechanisms make assumptions on the cause of

loss to determine the appropriate error, flow, or

congestion control response. This inference can

span the range:

� All losses are due to congestion; this assump-

tion is valid in networks that are engineered to

have highly reliable links, and is generally valid

for wired networks. This is the assumption that

TCP makes and has prevented congestion col-

lapse in the traditional wired Internet. This

assumption is conservative in that it errs on
the side of protecting the network at the

expense of performance when loss is not caused

by congestion.

� Losses may either be due to corruption or due

to congestion, or both. It may be possible to

use additional information (e.g., grouping of

packet losses, and delay variations) to better

infer the cause of loss. For example, networks
that use a different form of congestion control

than TCP�s loss-based scheme (e.g., delay-based

congestion control [13] or congestion control

that relies on explicit information from the net-

work [25]) could enable such inference.

� All losses are due to corruption; this assump-

tion is valid in lossy networks where there is

no chance of congestion, either due to overpro-
visioning or guaranteed resource reservation.

Previous work (e.g., [10]) concluded that impli-

cit loss discrimination is not an effective strategy.

However, congestion avoidance behaviors based

on accurate estimation of the end-to-end path

capacity can enhance TCP performance in certain

environments in which losses can occur both due
to congestion and corruption. Examples of conges-

tion avoidance behaviors that implicitly account

for corruption losses based on path capacity esti-

mation include TCP Westwood [14] and TCP

Peach [1].

TCP Westwood is a sender-side modification to

TCP Reno that continuously estimates the bottle-

neck capacity for the end-to-end path (based on
the times when acknowledgments are received),

and adjusts the congestion window based on the

estimated capacity [14]. Since packets dropped



6 The sender ultimately controls the data transmission rate

and so is always at least a component of congestion control.

350 R. Krishnan et al. / Computer Networks 46 (2004) 343–362
due to corruption should not reduce the estimated

capacity (assuming accurate measurements and

estimation), the loss discrimination is, therefore,

implicitly included in the congestion response.

TCP Peach, a congestion control scheme pro-
posed for satellite networks, uses dummy segments

(that must be treated as low-priority segments by

all intermediate nodes) to probe the availability

of network resources [1]. If all the dummy seg-

ments are acknowledged, then the sender inter-

prets this as evidence that there are unused

resources in the network and accordingly can in-

crease its transmission rate. In TCP-Peach, corrup-
tion errors are not explicitly notified, but instead

implicitly accounted for by the capacity estimation

strategy.

3.1.2. Explicit loss discrimination

Explicit loss discrimination is based on mecha-

nisms that explicitly signal loss due to corruption,

congestion, or both.
It is important to note that corruption cannot

be directly inferred from explicit congestion noti-

fication (e.g., ECN [21]), and vice versa. This is

due to the fact that a given packet may experience

both congestion as well as be dropped due to cor-

ruption. Furthermore, in cases where these mech-

anisms are cumulative or statistical in nature, it

becomes more difficult to infer one from the
other.

In this paper we focus primarily on explicit loss

discrimination. We present a taxonomy for explicit

transport error notification (ETEN) mechanisms

next. We examine ETEN mechanisms along two

orthogonal axes, namely, node behavior and con-

trol loop issues.

3.2. ETEN node behavior

There are two classes of behavior of concern to

ETEN: notification and response. This is reflected

in the behavior of two types of nodes:

1. The sender is the transport endpoint that trans-

mits data, and is typically responsible for
response behavior. In the case of reliable end-

to-end communication, this is the node that will

be required to retransmit data that has not
successfully reached the receiver. In the case

of TCP, the sender is also responsible for con-

gestion control decisions. 6

2. The notifier is a node that detects a corruption

event and initiates a notification that will ulti-
mately reach the sender. The notifier may

involve the receiving node, or the intermediate

nodes along the communication path.

Note that in this work we are concerned with

only corruption losses that are end-to-end in

scope. Generally speaking, mechanisms that at-

tempt local recovery of lost packets and try to hide
those losses from the sender are out of scope for

this paper. In particular, link-layer retransmis-

sions, link-layer forward error correction (FEC)

and performance-enhancing proxies [12] (e.g.,

snoop [9]) may be used in conjunction with the

mechanisms involving the end-hosts discussed in

this paper, but are specifically out of scope for

our discussions.
The sender and notifier nodes each exhibit

observation, decision, and action behaviors, dis-

cussed briefly in the following subsections.

3.2.1. Notifier behavior

The notifier, as defined earlier, is either an inter-

mediate or receiving node that detects corruption

and is responsible for acting in a manner that will
ultimately notify the sender.

Notifier observations consist of detecting cor-

ruption events, for example due to a checksum cal-

culation or feedback from the link layer.

Notifier decisions determine when and how to

make corruption notifications. For example, in

the case of cumulative ETEN the notifier will have

to determine the time interval over which to com-
pute corruption statistics and the times at which

the notifications should occur. If multiple mecha-

nisms are in effect, the notifier must decide which

is the appropriate one to use.

Notifier actions are the signaling mechanisms

used to report corruption-based loss. This may

range from sending an explicit ETEN signaling



7 The sender must have some default behavior to avoid

becoming deadlocked if an acknowledgment does not arrive

(e.g., a timeout with a default assumption about the cause of

loss).

R. Krishnan et al. / Computer Networks 46 (2004) 343–362 351
message directly back to the sender on the detec-

tion of a corrupted packet (out-of-band backward

packet-granularity ETEN) to modifying a header

field that is accumulating path corruption statistics

(in-band forward cumulative ETEN). Notifier ac-
tion might also consist of dropping a corrupted

packet or merely marking it as corrupt as it is for-

warded. The range of actions is discussed further

in Section 3.3.

3.2.2. Sender behavior

The sender is the node that will have to take ac-

tions to retransmit data once it has been notified.
Sender observations consist of understanding

corruption signaling from the notifier (whether as

explicit ETEN signaling messages or embedded

in returning acknowledgments), congestion infor-

mation (whether explicitly signaled as in ECN or

inferred as in the lack of an acknowledgment), as

well as local observations on its own environment,

such as offered load.
Sender decisions determine what action should

take place based on notification and other obser-

vations, for example the time and granularity of

retransmissions. A key additional decision is the

determination of the likelihood that a given loss

event is due to congestion, particularly in the ab-

sence of explicit congestion notification. As men-

tioned earlier, this cannot be correctly inferred in
the absence of an ETEN notification, since a given

loss event may be due to both corruption and

congestion.

Sender actions are simply the actions taken in

response to corruption, including packet retrans-

mission and dynamic FEC strength adjustment.

Additionally, sender actions include the appropri-

ate congestion control action, such as throttling
the sender�s transmission rate.

The next section describes various control

mechanisms that can be applied to the notifier–

sender control loop. In some cases sender and

notifier behavior are highly dependent on one an-

other. For example, if the notifier uses out-of-band

backward ETEN signaling messages to indicate

corruption, the sender must be capable of receiving
and parsing the messages. In other cases, the noti-

fier and sender may operate independently. For

example, the granularity of corruption notification
may be smaller than, equal to, or larger than the

granularity of sender retransmission.

3.3. Control loop

Corruption notification and response involves a

control loop between the notifier nodes that are in-

volved in the detection and notification of corrup-

tion and the sender of information that must

respond in order to enable recovery from the cor-

ruption losses. The notifiers may be intermediate

network nodes, the receiver, or both.

In the following subsections, we describe in
detail the various aspects of this control loop,

namely: (i) feedback, (ii) locus, (iii) granularity,

(iv) in- vs. out-of-band signaling, (v) direction of

control information flow, and (vi) determinism.

We illustrate the taxonomy from the perspective

of the response in Fig. 6, and provide a notifica-

tion-centric perspective in Fig. 7.

3.3.1. Feedback

The ETEN feedback loop can be open, closed,

or a hybrid.

Closed-loop feedback requires that acknowledg-

ments (positive or negative) are returned to the

sender to indicate which packets have been re-

ceived intact and which have been corrupted. 7

This is typically an ARQ mechanism with a num-
ber of possible variants such as go-back-n and

selective repeat.

Open-loop feedback uses forward error correc-

tion (FEC) to provide statistical guarantees on a

packet�s successful transmission. Often FEC

schemes are tightly coupled with a particular chan-

nel corruption model.

Hybrid open/closed-loop feedback combines
both mechanisms: open-loop FEC to reduce the

need for acknowledgment-based retransmissions,

with acknowledgments as necessary to trigger

retransmits and guarantee the delivery of data

(or, at least an understanding by the sender that

the data were not successfully delivered).



Feedback LocusDirectionGranularity

Corruption Notification

Explicit

...
Implicit

Determinism

Closed–loop

Open–loop

Hybrid

Per–PacketCumulative

Per–link
Per–flow

Per–node
Per–path

Forward Backward

Deterministic
(CETEN–A)

(CETEN–P)

Out–of–Band

... ...
Action MechanismObservation Mechanism Decision Mechanism

...
(MAC, IP, TCP checksums)

(Interface packet error, transmit, and overflow counts)

(Averaging, Thresholding)

(Select Signaling, Direction, and Granularity)

In–Band

... ...
(Generate Notification Packet)

...
(Mark packets, modify headers)

Intermediate–Node Endpoint

Receiver

(Infer Loss, ACK)
...

(CETEN) (PETEN) (HBH) (E2E)

Probabilistic

Out–of–Band
Signaling

In–Band vs.

Fig. 7. Corruption loss notification.

GranularityFeedback

(Window retransmit)

(Selective retransmit)(FEC)

Closed–loop Coarse

Fine
Open–loop

Locus
Deterministic

Determinism

(CETEN–A)

(CETEN–P)

Endpoint

Hybrid

Sender Receiver Both

... ...

(ARQ, CETEN)

(Stutter XOR)

... ... ...
(LEAST, CETEN) (CETEN MDF Computation)

Observation Mechanism Decision Mechanism Action Mechanism

(CETEN MDF Setting, Retransmission)

Intermediate–Node

...
(SnoopTCP, TCP Splicing)

Error Control Response

(HBH) (E2E)

Probabilistic

Fig. 6. Error correction response.

352 R. Krishnan et al. / Computer Networks 46 (2004) 343–362



R. Krishnan et al. / Computer Networks 46 (2004) 343–362 353
There are fundamentally twoways in which FEC

strategies can be used for ETEN: either the error

correction code can be contained entirely within

each packet or it can be distributed across multiple

packets. In the first case, each packet can include
additional bits of error correcting information;

intermediate nodes can detect and if possible cor-

rect corruption before forwarding the packet. A

large number of error correcting codes that are

effective under different error models are available.

In the second case, erasure codes can be used

that allow corrupted packets to be dropped while

allowing the end points to recover the information
from additional redundant packets. The Stutter

XOR scheme [24] is an example of a simple erasure

code. More sophisticated codes have been applied

to packet-switched networks [29,39,43].

3.3.1.1. Deployment challenges for FEC schemes

with TCP/IP. There are significant challenges to

combining FEC with some form of ETEN for
TCP/IP. Any reliable transport protocol must still

provide end-to-end ARQ to guarantee packet

delivery. TCP, in particular, uses ARQ in its com-

bined error, flow, and congestion control algo-

rithms; the addition of, and interaction with,

FEC may add significant protocol complexity.

In the case of satellite or wireless links, per-

packet FEC cannot protect against all non-conges-
tion packet losses, for example, channel fades.

Furthermore, IP routers simply drop erroneous

packets to prevent mis-forwarding [6]. With per-

packet FEC, intermediate IP routers would be re-

quired to correct packet headers (provided there is

no IP–IP encapsulation, else the payload may also

have to be corrected at intermediate routers) to en-

sure misforwarding. Furthermore, for any given
path MTU, the use of variable strength FEC

means that the MSS seen by TCP will fluctuate

with the corruption rate.

The interactions of end-to-end TCPmechanisms

for flow control, loss recovery, and congestion

avoidance with erasure codes is much more subtle.

There is tension between erasure codes, on the one

hand, trying to mask all packet losses (whether due
to congestion or corruption including fades) and

prevent retransmissions, and TCP on the other

hand, relying on the congestion losses to provide
feedback to congestion avoidance mechanisms.

This masking of losses challenges the fundamental

ETEN goal of being able to discriminate between

corruption and congestion packet losses.

TCP ACKs carry the sequence number of the
next byte of data the receiver expects to arrive.

This allows the sender to determine packet losses

and adjust the congestion window. When erasure

codes are used, this feedback is insufficient since

the last segment being accounted for (as received)

may belie the fact that some packets could have

been lost due to congestion (but were recon-

structed at the receiver). Enough packets must be
dropped so as to exceed the capability of the code

before the TCP sender is actually notified of con-

gestion. This added delay might make the conges-

tion avoidance loop unstable.

Solving this problem requires that we keep

track of not only the sequence number of the pay-

load data but also the sequence number of the

encoded packets. In this case, TCP congestion
avoidance could use this latter sequence number.

This will require the addition of this information

to the IP or TCP packet headers (perhaps in the

form of an option).

Furthermore, with erasure codes, the receiving

TCP has to wait for the possibility of subsequent

packets correcting a loss. This can conflict with

the settings of the retransmit timer and the delayed
acknowledgment timer.

3.3.2. Locus of ETEN

We use locus of control to describe the span of

the ETEN control loop, in particular to define the

notifier node or nodes that are responsible for cor-

ruption detection and reporting back to the sender.

End-to-End (E2E) ETEN relies only on the re-
ceiver to serve as the notifier that detects corrup-

tion and informs the sender.

Hop-by-Hop (HBH) ETEN relies on nodes

along the path to serve as notifiers to detect and re-

port corruption. HBH schemes involve the inter-

mediate network nodes (switches or routers) as

well as the receiver (for the last hop). Additionally,

the receiver will be involved in any necessary end-
to-end recovery notification, including relaying

forward ETEN messages to the sender (as dis-

cussed in Section 3.3.5). Note that even though



354 R. Krishnan et al. / Computer Networks 46 (2004) 343–362
we generally think of TCP/IP as having only

end-to-end loss recovery, the IP checksum and IP

router semantics that require the dropping of cor-

rupted packets [6] is a HBH component of the

TCP/IP loss recovery process.
From a deployment perspective, ETEN mecha-

nisms that allow selected intermediate nodes in a

path to participate in the corruption detection

and notification scheme are more desirable than

those ETEN mechanisms which require all inter-

mediate nodes in the path to participate. The for-

mer has the significant practical advantage of

allowing selective deployment of nodes that need
corruption notification mechanisms rather than

requiring massive replacement of network infra-

structure. For example, candidates for the deploy-

ment of ETEN notifier nodes are wireless access

points and gateways, and switches that terminate

long-haul wireless and satellite links.

3.3.3. Granularity

The granularity of ETEN corruption feedback

refers to the scope over which corruption detection,

notification, and response actions are taken. At the

highest level, we refer to the granularity as either

per-packet (PETEN) or cumulative (CETEN).

Packet-based (PETEN) mechanisms are able to

detect, report, and respond to individual packet

corruption events. Per-packet notifiers are able to
properly convey the fact that individual packets

have been corrupted; per-packet senders are able

to retransmit those (and only those) packets that

require retransmission. The Oracle ETEN de-

scribed in Section 2.1 is a PETEN with the ability

to perfectly determine addressing and sequence

numbers for each packet.

PETEN requires not only that the sender and
notifier perform corruption detection and notifica-

tion on a per-packet granularity, but that the noti-

fiers that detect corruption are able to properly

identify corrupted or obliterated packets. Thus,

the source and destination address as well as the se-

quence number must be available or reconstructed.

In the case of TCP, this consists of the source and

destination IP addresses, the source and destination
TCP ports, and the TCP sequence number. In addi-

tion, the packet in question must be part of the sen-

der�s current window; otherwise, the opportunity to
mitigate the performance problems caused by the

corrupted packet is lost.

In practice PETEN may be challenging since it

requires that the notifier have a reliable mechanism

with which it can determine the transport end-
points. One solution to consider is to separately

protect the header by a strong FEC check. An-

other is to obtain this information from link layer

recovery mechanisms (e.g., the upstream neighbor

that had to retransmit a packet can generate such

notifications). In the absence of such mechanisms,

observations and notifications of corruption loss

have to be at a coarser granularity, described next.
Cumulative ETEN (CETEN) mechanisms are

needed when the notifier nodes can only calculate

cumulative corruption rates for each link. In other

words, the information in the header of a cor-

rupted packet is considered inaccurate and cannot

be constructed with enough confidence to allow

PETEN mechanisms to perform well.

The cumulative CETEN information conveyed
to the end-hosts can be in one of several different

forms:

� An absolute corruption rate (bit-based, byte-

based or packet-based) observed within a mov-

ing window in time. The corruption rate may be

quantized into a small number of steps (for

example, high, medium, and low). A binary feed-
back scheme [38] (see also [36,37]) is a special

case that provides indication that the bit/byte/

packet corruption rate exceeds some threshold.

� A relative corruption rate that simply indicates

that the quantized corruption rate has increased

or decreased from the previous value.

� An estimate of the probability that a packet sur-

vives corruption.

There are various possibilities for the aggrega-

tion of the cumulative corruption statistics from

each notifier (e.g., per-flow, per-path, per-link, or

per-node). Furthermore, CETEN information can

be collected on a per-hop basis or aggregated over

the end-to-end path. Due to the difficulty in cor-

rectly assigning corrupted packets to their corre-
sponding flows, any per-flow CETEN information

has to be estimated, for example from what is ob-

served across all flows using a given link.



R. Krishnan et al. / Computer Networks 46 (2004) 343–362 355
Estimating and correctly attributing the fraction of

the observed aggregate corruption loss rate on a

per-flow basis can add significant complexity to

the node (except perhaps at the receiver). Determin-

ing whether this can be done reliably (and if
so, how) requires further study. We investigate

CETEN further in Section 4.

The applicability of PETEN and CETEN

mechanisms to various application and network

scenarios under various error models also requires

further study.

3.3.4. In-band vs. out-of-band signaling

ETEN signaling can either be out-of-band or in-

band.

Out-of-band (OB) signaling uses distinct ETEN

signaling messages (e.g., using ICMP) that are

propagated from the notifier node to the sender

(either backward or forward, as described in the

following subsection).

In-band (IB) signaling modifies or piggybacks
on the headers of data packets and acknowledg-

ments. In-band signaling is particularly attractive

for CETEN schemes that propagate corruption

statistics in the packet header. In this case, each

CETEN-capable intermediate notifier node modi-

fies the corruption rate carried in the packet

header, so that when the packet reaches its desti-

nation the receiver knows the path corruption
rate.

Note that for packet-based PETEN, if cor-

rupted packets are dropped (as in IP [6]), the

ETEN indication must be contained in other pack-

ets belonging to the same flow. Alternatively, if

the packet header is separately protected by an

error check and only the payload is corrupted,

the packet could be marked as corrupt and for-
warded towards the destination.

3.3.5. Direction of notification

Notifications can either be sent directly back to

the sender, or proceed to the destination to be re-

turned to the sender.

Backward ETEN propagates notifications back-

ward, analogous to backward explicit congestion
notification schemes (e.g., source-quench [34] and

ATM BECN [5]). In these cases notifiers use out-

of-band signaling messages destined to the sender.
It is also conceivable to piggyback backward

ETEN information in returning acknowledgments

to the sender (i.e., in-band backward ETEN), but

this adds significant complexity to the notifier.

Forward ETEN propagates notifications for-
ward to the destination, analogous to forward ex-

plicit congestion notification schemes (e.g., ATM

FECN [5] and IP-based ECN [21,36,37]).

If separate messages are generated per packet

corruption loss, it is easy to see that backward

PETEN could lead to faster loss repair than for-

ward PETEN. The potential performance benefit

of using backward ETEN is higher if the corrup-
tion occurs closer to the sender and increases with

the round-trip delay of the path.

Two in-band signaling alternatives that do not

require generation of new packets for forward

ETEN exist. With the first alternative, the interme-

diate notifier node that detects a corrupted packet

can convey this information by marking or modi-

fying headers of subsequent packets. If reliable
per-flow assignment of the corruption is possible,

then this operation can be restricted to subsequent

packets belonging to the same flow. This requires

the maintenance of sufficient per-flow state to find

a subsequent packet on the same flow. The other

approach is to forward the corrupted packet (suit-

ably marked or encapsulated) and pass it along to

the destination (subsequent nodes must also for-
ward this packet), rather than dropping it (as cur-

rently required by IP router semantics [6]). The

destination in turn can notify the sender of the

packet lost due to corruption.

3.3.6. Determinism

The last aspect of the ETEN control mechanism

to consider is how deterministic actions are.
Deterministic actions are used when a particular

response is needed and sufficient knowledge is

available. An example of deterministic action by

the notifier is the transmission of a backward

PETEN message for a corrupted packet from

which the header could be correctly decoded. A

deterministic sender response would be to retrans-

mit this packet.
Probabilistic actions are taken based on infor-

mation that is statistical or inferred without cer-

tainty. An example of probabilistic notifier



356 R. Krishnan et al. / Computer Networks 46 (2004) 343–362
behavior is transmission of a backward PETEN

message when the header cannot be fully recon-

structed (but perhaps inferred with reasonable

confidence based on comparing the corrupted

packet�s header with collected per-flow state). An
example of sender probabilistic behavior is adjust-

ing the congestion window a fraction of the time

based on an estimate of the fraction of losses due

to congestion (as will be described in Section 4).

In this section, we provided a taxonomy of the

ETEN solution space. The key issues are:

� where, how, and what information about cor-
ruption is observed and tracked by the notifier;

� how does the notifier decide on when and by

what means to convey the information to the

sender;

� what information related to loss recovery does

the sender track and how;

� how does the sender decide how to discriminate

among losses, and by what means to recover
from losses;

� design of mechanisms for detection, notifica-

tion, and response to corruption losses.

We discussed that various alternatives exist for

each one of these issues. The potential gains in Sec-

tion 2 motivate further exploration and evaluation

of the alternatives, in terms of how well they per-
form and how best to combine them into an end-

to-end solution. In the next section, we present a

promising new CETEN approach that combines

particular approaches within this space.
8 In practice, we only expect intermediate nodes connected

to links experiencing non-negligible amounts of corruption to

implement CETEN. An intermediate node that does not

experience corruption loss will essentially not change the path

state and, therefore, the work involved would be wasted effort.
4. Cumulative ETEN

The last two sections of this paper have broadly

and generally discussed the implications of corrup-

tion-based loss on TCP performance and what

mechanisms could be used to counteract the im-

pact of corruption-based loss. In this section we

narrow our focus to a novel class of mitigation

for combating the impact of corruption-based loss.

In this section we explore cumulative explicit
transport error notification (CETEN) techniques

that are applicable when sufficient information

about the cause of specific packet drops is not
available to the transport layer endpoints. Rather,

using CETEN the TCP sender relies on corruption

rate statistics provided by the network to drive the

behavior of the congestion control algorithms. In

this section, we describe two CETEN strategies
and present a brief set of simulations that show

their promise. The CETEN presentation in this

paper is preliminary and meant to suggest a new

mechanism that attempts to achieve the ideals pre-

sented in Section 2. More in-depth treatments of

CETEN issues are provided in [17,18].

4.1. Determining the packet corruption rate

The first problem we tackle is that of transmit-

ting rich information about the corruption rate

detected within the network to the transport end-

points. The mechanism we employ in our study

adds a corruption survival-probability field to each

packet. This value represents the probability that

a packet avoids corruption as it traverses the net-
work path. The survival probability field is initial-

ized to 1.0 by the source of the packet and is

updated by intermediate nodes along the path (as

described in more detail below). When a packet ar-

rives at the receiver the survival probability con-

tained in the packet is the survival probability of

the entire path. The transport endpoint at the des-

tination keeps a record of the survival probability
of the forward path and echoes the probability

back to the sender in the next ACK packet trans-

mitted. As discussed in Section 3 there are alterna-

tive methods for gathering the information.

Experimenting with those methods is left as future

work.

Each intermediate node in the path is responsi-

ble for tracking the corruption rate, r, on their
incoming links. 8 Each intermediate node then

multiplies the path corruption survival probability

field from each packet header by the node�s own

estimate of the link corruption survival probabil-

ity, (1�r), for the link on which the packet arrived.



R. Krishnan et al. / Computer Networks 46 (2004) 343–362 357
The exact method for arriving at the link error rate

is a subject for future work. In the experiments

presented in this paper r represents the configured

link corruption rate rather than a corruption rate

that is tracked over time. Using the configured cor-
ruption rate as r allows us to assess the upper

bound on the performance improvements that

are possible without any estimation error. Design-

ing methods to track the corruption rate is clearly

a rich area of future work. Possible schemes for

arriving at error rates (and smoothing/averaging

them over time) are limitless. A possible approach

is given in [27]. Finally, we verified the observed
corruption rate to be within 10% of the configured

corruption rate in our simulations.

We note that there is a delay between an inter-

mediate host noting its corruption rate and the

sender ultimately receiving that information. The

delay is less than the RTT of the network path.

We believe this delay is tolerable given that we

envision the intermediate node reporting corrup-
tion rates somehow averaged over a number of

RTTs. However, if corruption rates are to be re-

ported for shorter time intervals then the delay in

getting the information to the TCP sender may

play a part in the overall effectiveness of CETEN.

Such a scenario is not explored in this paper and is

left as future work.

4.2. Computing the total loss rate

Loss can be either due to congestion or corrup-

tion. 9 In theory, if a TCP knew how to ascertain

the fraction of losses due to one cause (say, losses

due to corruption, as outlined above) and if the

TCP can determine the total loss rate, then the

TCP can determine the losses due to the other
cause. A natural method for ascertaining the total

loss rate is for the TCP sender to count the number

of retransmissions. However, as shown in [3] this

method ends up significantly overestimating the
9 Exactly how to handle the case described in the last section

when a packet experiences both congestion and corruption is

outside the scope of this paper. Also, in our simulations loss is

either caused by congestion or corruption and never crosses

into this gray area.
total loss rate due to TCP�s sometimes gross

retransmission strategies. A family of algorithms

(called LEAST) is presented in [3] that TCP send-

ers can use to estimate the total loss rate to within

10% of the actual loss rate in over 90% of the TCP
connections studied (using the NIMI mesh of

Internet measurement points [32]).

An alternative approach to estimating the total

loss rate is to have the network inform the TCP

endpoint about the current congestion-survival

probability, much like the scheme outlined above

for corruption information; [27] outlines such a

scheme. In addition, the XCP congestion control
technique [25] could also be leveraged to help dis-

ambiguate the cause of losses. The biggest weak-

ness of such an ‘‘in-the-network’’ scheme is that

if some congested routers do not participate they

cause the sender to overestimate the fraction of

losses attributed to corruption (by underestimat-

ing the congestion rate) and, therefore, inject more

traffic into the network than appropriate. In-the-
network strategies require less accounting on the

part of the TCP sender/receiver; however, there

also could be issues relating to the soundness of

the estimates of corruption and congestion in the

network.

For the work presented in this paper we use the

LEAST loss estimation technique in the TCP sen-

der to estimate the total loss rate when needed.

4.3. Alternate congestion responses

In this section, we address the question of what

the sender could do with the corruption probabil-

ity estimates and how TCP�s congestion response

may be changed to incorporate this new informa-

tion. We specify two different schemes that could
be used by a TCP sender to mitigate the perform-

ance impact of corruption. These are far from the

only two schemes that could be used. However,

determining the best variant for general use is

beyond the scope of this paper.

4.3.1. Probabilistic: CETENP

Given that TCP has inferred loss(es) from
duplicate acknowledgments [4], selective acknowl-

edgments (SACKs) [28] and/or retransmission

timeouts [33] TCP needs a way to decide on a



358 R. Krishnan et al. / Computer Networks 46 (2004) 343–362
congestion control response. For the CETENP

variant we use a weighted coin flip based on the

estimated fraction of the losses due to corruption,
e
p, where e is the fraction of packets dropped due to

corruption and p is the fraction of packets dropped
for any reason. If, probabilistically, a particular

loss is attributed to packet corruption the lost seg-

ment can be retransmitted without modifying the

congestion control state. Otherwise, the TCP

retransmits the lost segment and invokes standard

congestion control procedures (i.e., reducing the

congestion window by half). While CETENP

may not correctly choose whether to change TCP�s
congestion control state on any particular loss, the

goal is to provide the appropriate average, long-

term congestion response without incurring the

traditional susceptibility to losses caused by

corruption.
4.3.2. Adaptive adjustment: CETENA

An alternative to the binary decision with re-
gards to invoking congestion control offered by

CETENP, CETENA provides an adaptive scheme

that reacts to each loss, but not by using the tradi-

tional multiplicative decrease factor (MDF) that

stock TCP uses (one-half). Rather, CETENA�s
MDF is defined as:

MDF ¼
1þ e

np

� �k

2
; nP 1; k > 0; p > 0; ð1Þ

where p is the total packet loss rate, e is the corrup-

tion loss rate and n and k are parameters that

allow for the shaping and bounding of the MDF.

In the experiments presented in this paper we use

n=k=1 which provides a congestion response as
if the only losses were those caused by congestion.

When n=k=1 and all loss is caused by congestion

the standard MDF of one-half is used. However, if

all loss is due to packet corruption an MDF of 1 is

used (i.e., no cwnd reduction). Varying n and k can

make the response more conservative (or more

aggressive) and likely has implications on fairness.

Future work should include experimenting with
these shaping parameters, but such work is beyond

the scope of the initial evaluation presented in this

paper. Finally, note that any continuous monoton-

ically increasing function based on e
p that is no
more aggressive than Eq. (1) with n=k=1 can be

used to determine the MDF.

4.4. CETEN simulations

To investigate CETEN we implemented both

CETENA and CETENP in ns-2. CETEN is imple-

mented in the ns sack1 TCP variant rather than the

FullTcpSack variant used in Section 2 because

sack1 supports DSACK (which is needed for the

estimate of p). The simulations consist of a four-

node network with TCP end points separated by

two routers. The routers are connected to each
other with a 5 Mbps link with a 40 ms one-way

propagation delay. The routers use drop-tail

queues with 150 packet buffer sizes. A uniform

random process is used to insert corruption-based

drops on the link between the routers. The corrup-

tion-rate is varied (as shown in our results). Each

host is connected to a router via a 10 Mbps link

with a one-way propagation delay of 3 ms. The
TCP endpoint uses an advertized window of 500

segments––enough to never be a performance issue

in our simulations. The hosts use an MSS of 1460

bytes and delayed ACKs. This scenario is different

from the scenarios used in Section 2. The TCP sen-

der estimates the total loss rate using the DSACK

version of the LEAST algorithm [3]. This simula-

tion setup allows for the TCP to self-congest the
network (i.e., a single TCP connection can con-

sume the network capacity and the entire router

queue causing congestion-based losses to occur).

All simulations are run for 1 h to assess the

long-term average sending rate. The following

results represent the average of 30 random simu-

lations.

The situation presented in this section is more
akin to a terrestrial wireless network than those

previously explored in Section 2. Since the TCP

model is generally discussed in terms of packet loss

rates rather than bit-error rates, we use the frac-

tion of packets lost when discussing the drop prev-

alence in this section as opposed to the bit-error

rates used in previous sections. All corruption

rates used in Section 2 represent less than a 1%
packet drop rate. In this section, most of the pack-

et error rates used are at least 1%. In other words,

the experiments presented in this section generally



R. Krishnan et al. / Computer Networks 46 (2004) 343–362 359
have a higher prevalence of corruption than in the

experiments presented in Section 2.

The first set of simulations involve a single TCP

flow across the network described above. In these

simulations corruption-based losses are applied
to only the data packets traversing the bottleneck

link (i.e., not for the ACK traffic flowing back to

the sender). Fig. 8 shows TCP performance as a

function of the corruption-rate plotted on a log–

log scale. The plot shows the performance drop-

off of stock TCP SACK. In addition, the figure

illustrates that both versions of CETEN offer bet-

ter performance than stock TCP SACK––even
though CETEN�s performance does decrease as

the corruption rate increases.

The cause of CETEN�s performance reductions

at high packet corruption rates is largely dropped

retransmissions. TCP SACK relies on the RTO

timer to cope with retransmissions that are

dropped. The RTO timer represents a lengthy

inactive period, as well as a second cwnd reduction.
We do note that even though performance is

dropping off at a packet corruption rate of 20%,

CETENA still achieves more than an order of

magnitude increase when compared to stock TCP.

Another notable aspect of Fig. 8 is the differ-

ence in performance between CETENA and

CETENP––even though they are intuitively

attempting to achieve the same notion. The notion
behind CETENP is that it reduces cwnd roughly

the right number of times over the course of a long
 1000

 10000

 100000

 1e+06

0.01 0.1 0.2

G
oo

dp
ut

 (
B

ps
)

Packet Corruption Rate

CETEN_A
CETEN_P

Stock SACK

Fig. 8. CETENP and CETENA vs. stock SACK TCP.
transfer to compensate for network congestion.

However, on any specific loss event CETENP

could ‘‘guess wrong’’ and take the ‘‘wrong’’ action.

For instance, if a loss is caused by corruption,

CETENP may decide to reduce cwnd. The hope
is that later when there is a congestion-based loss

CETENP will even things out by not reducing

cwnd. However, in the simulations presented in

Fig. 8 this notion does not play out as planned.

When there is only one connection in the network

that connection is solely responsible for network

congestion. Therefore, when congestion occurs

and CETENP decides not to reduce cwnd, the con-
gestion is still present and more losses will occur.

In effect, CETENP is forced to reduce the cwnd

when congestion occurs. So, while CETENP pre-

vents the cwnd from being reduced in some cases

when corruption occurs, the connection does not

get the entire benefit envisioned, and hence, expe-

riences lower performance compared to CETENA.

In a network with more statistical multiplexing
CETENP may perform better (closer to CETENA)

because a single connection will not be the sole

cause of congestion. Therefore, when a congestion

event occurs and a CETENP connection maintains

its cwnd the connection may not incur further con-

gestion because competing traffic will also likely be

backing off.

The second set of CETEN simulations involves
competing traffic. The four node topology de-

scribed above is again employed. In this set of tests

we run a single TCP connection in each direction

across the network. In addition, we run five on/

off constant-bit rate (CBR) flows across the net-

work in each direction. The CBR flows are driven

by an exponential random process that has a mean

on time of 2.5 s and a mean off time of 10 s. When
on, each CBR flow sends at 1 Mbps. Therefore,

when all the CBR flows are running they would

consume the bottleneck capacity. The TCP con-

nection is set up as described for the single flow

tests above. Corruption-based losses are inserted

in both directions of the bottleneck link according

to a uniform random process.

Fig. 9 shows TCP performance as a function of
the corruption rate applied to the bottleneck link

on a log–log plot. Again, this plot illustrates the

power of CETEN to increase performance over



 100

 1000

 10000

 100000

 1e+06

0.01 0.1 0.2

G
oo

dp
ut

 (
B

ps
)

Packet Corruption Rate

CETEN_A
CETEN_P

Stock SACK

Fig. 9. CETENP and CETENA vs. stock SACK TCP with

competing traffic.

360 R. Krishnan et al. / Computer Networks 46 (2004) 343–362
stock TCP. Also, this plot shows that CETENP

provides better performance enhancement at high

error rates than shown above for single flow exper-

iments. This suggests that the above note about

CETENP working better in an environment with
a high degree of statistical multiplexing may be

accurate (but must be verified completely using

more complex simulations with competing conges-

tion-aware traffic). With competing traffic CETEN

shows performance improvements of 1–2 orders of

magnitude over stock TCP SACK at high error

rates.

4.5. Discussion

Our preliminary simulations have shown

CETEN to be a promising approach in mitigat-

ing the problems corruption-based losses pose to

TCP performance in wireless and satellite net-

works. However, many questions remain before

the community could even consider CETEN for
wide-scale adoption, such as: How do we derive

corruption-survival probabilities? Over what time

scale? Should TCP and/or the router keep a run-

ning or smoothed average of the congestion and

corruption rates? How burdensome is CETEN

on the forwarding engines in routers? What can

or should be done about receivers sending bogus

corruption reports in an attempt to game conges-
tion control [42]? These and many additional
questions will be the subject of future work in this

area.
5. Summary

In this paper, we consider the problem of

enhancing TCP performance in the face of corrup-

tion losses, and make the following contributions.

We confirm previous studies that show corruption-

based loss causes performance problems for TCP.

In addition, we illustrate a plausible upper bound

on the performance TCP could attain with perfect
knowledge about the causes of loss. We present a

detailed taxonomy of the space of mitigations for

the issues caused by corruption-based loss. This

taxonomy is a useful road-map to researchers

who wish to pursue alternative mitigation ap-

proaches. Finally, we offer a preliminary illustra-

tion of the potential benefits of a previously

unexplored portion of the mitigation space. We
show that CETEN is a promising technique for

improving TCP performance in environments with

non-negligible corruption-based packet loss. While

promising, CETEN also has numerous theoretical

and practical issues that require attention before

the strategy will be useful for general, wide-scale

deployment.
Acknowledgments

The work presented in this paper was con-

ducted with funding from NASA�s Glenn Re-

search Center and NASA�s Earth Science

Technology Office under contract number NAS3-

99175, as well as from the National Science Foun-
dation under grant number 0205519. James

Sterbenz and Mark Allman performed a portion

of this work while they were with BBN Technolo-

gies. Will Ivancic (NASA GRC), Steve Polit (BBN

Technologies) and the anonymous reviewers pro-

vided very helpful comments on an earlier version

of this manuscript. Shawn Ostermann (Ohio Uni-

versity) and David Mankins (BBN Technologies)
contributed to the CETEN experiments outlined

in Section 4.



R. Krishnan et al. / Computer Networks 46 (2004) 343–362 361
References

[1] I.F. Akyildiz, G. Morabito, S. Palazzo, TCP-Peach: a new

congestion control scheme for satellite IP networks, IEEE/

ACM Transactions on Networking 9 (3) (2001) 307–321.

[2] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton, Early

retransmit for TCP and SCTP, Internet-Draft draft-

allman-tcp-early-rexmt-03.txt, December 2003, work in

progress.

[3] M. Allman, W. Eddy, S. Ostermann, Estimating loss rates

with TCP, ACM Performance Evaluation Review 31 (3)

(2003).

[4] M. Allman, V. Paxson, W. Stevens, TCP congestion

control, Request for Comments 2581, April 1999.

[5] ATM Forum, ATM User Network Interface (UNI)

Signalling Specification Version 4.1, af-sig-0061.002, April

2002, available from www.atmforum.com/stand-

ards/approved.html.

[6] F. Baker (Ed.), Requirements for IP Version 4 Routers,

Request for Comments 1812, June 1995.

[7] A. Bakre, B.R. Badrinath, I-TCP: indirect TCP for mobile

hosts, in: Proceedings of the 15th International Conference

on Distributed Computing Systems (ICDCS), May 1995.

[8] H. Balakrishnan, R.H. Katz, Explicit loss notification and

wireless web performance, in: Proceedings of the IEEE

Globecom Internet Mini-Conference, Sydney, Australia,

November 1998.

[9] H. Balakrishnan, V.N. Padmanabhan, S. Seshan, R.H.

Katz, A comparison of mechanisms for improving TCP

performance over wireless links, IEEE/ACM Transactions

on Networking 5 (6) (1997) 756–769.

[10] S. Biaz, N.H. Vaidya, Distinguishing congestion losses

from wireless transmission losses: a negative result, in:

Proceedings of the Seventh International Conference on

Computer Communications and Networks (IC3N), New

Orleans, October 1998.

[11] E. Blanton, M. Allman, K. Fall, Lili Wang, A conservative

selective acknowledgment (SACK)-based loss recovery

algorithm for TCP, Request for Comments 3517, April

2003.

[12] J. Border, M. Kojo, J. Griner, G. Montenegro, Z. Shelby,

Performance enhancing proxies intended to mitigate link-

related degradations, Request for Comments 3135, June

2001.

[13] L. Brakmo, S. O�Malley, L. Peterson, TCP Vegas: new

techniques for congestion detection and avoidance, in:

Proceedings of ACM SIGCOMM, August 1994.

[14] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, R.

Wang, TCP Westwood: end-to-end congestion control for

wired/wireless networks, Wireless Networks 8 (2002) 467–

479.

[15] D.W. Davies, The control of congestion in packet-switch-

ing networks, IEEE Transactions on Communications

COM-20 (3) (1972) 546–550.

[16] S. Dawkins, G. Montenegro, M. Kojo, V. Magret, N.

Vaidya, End-to-end performance implications of links with

errors, Request for Comments 3155, August 2001.
[17] W. Eddy, Improving TCP performance with path error

rate information, Master�s Thesis, Ohio University, March

2004.

[18] W. Eddy, S. Ostermann, M. Allman, New techniques for

making transport protocols robust to corruption-based

loss (submitted for publication).

[19] K. Fall, S. Floyd, Simulation-based comparisons of Tahoe,

Reno, and SACK TCP, ACM Computer Communication

Review 26 (3) (1996) 5–21.

[20] S. Floyd, K. Fall, Promoting the use of end-to-end

congestion control in the internet, IEEE/ACM Transac-

tions on Networking 7 (4) (1999) 458–472.

[21] S. Floyd, TCP and explicit congestion notification, ACM

Computer Communication Review 24 (5) (1994) 10–23.

[22] C. Hayes, Analyzing the performance of new tcp exten-

sions over satellite links, Master�s Thesis, Ohio University,

August 1997.

[23] V. Jacobson, Congestion avoidance and control, in:

Proceedings of ACM SIGCOMM �88, Stanford, CA,

USA, August 1988.

[24] M.A. Jolfaei, B. Heinrichs, M.R. Nazeman, Improved

TCP error control for heterogeneous WANs, in: Proceed-

ings of the IEEE National Telesystems Conference, San

Diego, CA, USA, May 1994.

[25] D. Katabi, M. Handley, C. Rohrs, Internet congestion

control for future high bandwidth-delay product environ-

ments, in: Proceedings of ACM SIGCOMM, August 2002.

[26] S. Kent, R. Atkinson, Security architecture for the internet

protocol, Request for Comments 2401, November 1998.

[27] R. Krishnan, M. Allman, C. Partridge, J.P.G. Sterbenz,

Explicit transport error notification (ETEN) for error-

prone wireless and satellite networks, Technical Report

TR-8333, BBN Technologies, March 2002.

[28] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP

selective acknowledgment options, Request for Comments

2018, October 1996.

[29] A.J. McAuley, Reliable broadband communication using a

burst erasure code, in: Proceedings of ACM SIGCOMM

�90, Philadelphia, PA, USA, September 1990.

[30] M. Mellia, M. Meo, C. Casetti, TCP smart framing: a

segmentation algorithm to improve TCP performance, in:

Proceedings of the 2nd International Workshop on QoS in

Multiservice IP Networks (QoS-IP 2003), February 2003.

[31] ns-2 simulator, available from http://www.isi.edu/nsnam/

ns/index.html.

[32] V. Paxson, J. Mahdavi, A. Adams, M. Mathis, An

architecture for large-scale internet measurement, IEEE

Communications 36 (8) (1998) 48–54.

[33] V. Paxson, M. Allman, Computing TCP�s retransmission

timer, Request for Comments 2988, November 2000.

[34] J. Postel, Internet control message protocol, Request for

Comments 792, September 1981.

[35] J. Postel (Ed.), Transmission control protocol, Request for

Comments 793, September 1981.

[36] K. Ramakrishnan, S. Floyd, A proposal to add explicit

congestion notification (ECN) to IP, Request for Com-

ments 2481, January 1999.

http://www.atmforum.com/standards/approved.html
http://www.atmforum.com/standards/approved.html
http://www.isi.edu/nsnam/ns/index.html
http://www.isi.edu/nsnam/ns/index.html


362 R. Krishnan et al. / Computer Networks 46 (2004) 343–362
[37] K. Ramakrishnan, S. Floyd, D. Black, The addition of

explicit congestion notification (ECN) to IP, Request for

Comments 3168, September 2001.

[38] K.K. Ramakrishnan, R. Jain, A binary feedback scheme

for congestion avoidance, ACM Transactions on Compu-

ter Systems 8 (2) (1990) 158–181.

[39] L. Rizzo, Effective erasure codes for reliable computer

communication protocols, ACM Computer Communica-

tion Review 27 (2) (1997) 24–36.

[40] N. Samaraweera, Non-congestion packet loss detection for

TCP error recovery using wireless links, IEE Proceedings

in Communications 146 (4) (1999) 222–230.

[41] N. Samaraweera, G. Fairhurst, Explicit loss indication and

accurate RTO estimation for TCP error recovery using

satellite links, IEE Proceedings in Communications 144 (1)

(1997) 47–53.

[42] S. Savage, N. Cardwell, D. Wetherall, T. Anderson, TCP

congestion control with a misbehaving receiver, ACM

Computer Communications Review 29 (5) (1999) 71–78.

[43] N. Shacham, P. McKenny, Packet recovery in high-speed

networks using coding and buffer management, in: Pro-

ceedings of IEEE INFOCOM �90, San Francisco, CA, June

1990.

[44] J. Stone, C. Partridge, When the CRC and TCP checksum

disagree, in: Proceedings of ACM SIGCOMM 2000,

Stockholm, Sweden, August 28–September 1, 2000.

Rajesh Krishnan is a Senior Scientist at
BBN Technologies, Cambridge, MA,
USA.At BBN�s InternetworkResearch
Department since 1997, he has led and
contributed to several research efforts
in the field of networking. He holds the
Ph.D. (2004) and M.S. (1996) degrees
in Computer Engineering from Boston
University, Boston, MA, USA, and the
B.E. (1991) degree with Honours in
Electrical Engineering from the Regio-
nal Engineering College, Durgapur,
West Bengal, India. From 1991–1994,

he worked for the Tata Engineering and Locomotive Company

Limited, Jamshedpur, Bihar, India. He is a member of the ACM,
the IEEE, and the IEEE Communications Society.

James P.G. Sterbenz is a Visiting
Research Scientist in the Computer
Networks Research Group at the
University of Massachusetts, Amherst.
He has been PI for several DARPA
and NASA funded research programs
in the areas of survivable, disruption-
tolerant, mobile, wireless, and active
networking, and TCP and web per-
formance. He has previously held
senior research staff and management
positions at BBN Technologies, GTE
Laboratories, and IBM, and holds a
D.Sc. in Computer Science from Washington University in St.
Louis. He is program co-chair for IEEE Hot Interconnects
2004, and was program co-chair of IWAN 2003, 2002, and
PfHSN�99. He is past chair of the IEEE Communications
Society Technical Committee on Gigabit Networking, chair of
the IFIP Protocols for High Speed Networks Steering Com-
mittee, member of the IFIP Active Networks steering com-
mittee, senior member of the IEEE, member of the ACM, IEE
(UK), IEICE (Japan), the Internet Society Interplanetary Spe-
cial Interest Group, and on the editorial board of IEEE Net-
work. He is the author of the book �High-Speed Networking: A
Systematic Approach to High-Bandwidth Low-Latency
Communication�.

Wesley M. Eddy is currently a
researcher at NASA�s Glenn Research
Center. The work described here was
completed while he was a student at
Ohio University, where he earned the
B.S. and M.S. degrees in computer
science in 2002 and 2004. His research
interests include protocols for mobile
hosts and extending transport proto-
cols for NASA missions.
Craig Partridge is a Chief Scientist at
BBN Technologies, where he has done
data communications research for the
past 20 years. He is best known for
designing how Internet email is routed,
and for his work on high performance
networking. A Fellow of the IEEE and
the ACM, he received his A.B., M.Sc.
and Ph.D. degrees from Harvard
University.
Mark Allman is a Computer Scientist
with the International Computer Sci-
ence Institute. His current research
interests are in the areas of transport
protocols, congestion control, meas-
uring network dynamics and network
security. He is involved in the Internet
Engineering Task Force, where he has
chaired several working groups and
BoFs and is currently a member of the
Transport Area Directorate. He also
chairs the Internet Measurement
Research Group within the Internet

Research Task Force. He has served on the program committee

for numerous conferences and workshops. He holds B.S. and
M.S. degrees in computer science from Ohio University and is a
member of the ACM.


	Explicit transport error notification (ETEN) for error-prone wireless and satellite networks
	Introduction
	Can ETEN help?
	Oracle notifications
	Single flow simulations
	Competing traffic
	Discussion

	A taxonomy of corruption notification and response mechanisms
	Loss discrimination
	Implicit loss discrimination
	Explicit loss discrimination

	ETEN node behavior
	Notifier behavior
	Sender behavior

	Determinism

	Cumulative ETEN
	Determining the packet corruption rate
	Computing the total loss rate
	Alternate congestion responses
	Probabilistic: CETENP
	Adaptive adjustment: CETENA

	CETEN simulations
	Discussion

	Acknowledgments
	References


